Fluid Mechanics — One-File Bundle
📘 Chapters covered — Topics & Cross-Refs Click to open

Fluid Mechanics — Conventions & Notation

Beginner-friendly crib sheet of symbols seen in classical fluid mechanics.

Primary source: G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 2000.
📖 Batchelor — Chapter 1 (All topics)
1) Overview

What the chapter sets up

  • Continuum viewpoint: fields \( \mathbf{u}(x,t), p(x,t) \).
  • Kinematics vs dynamics: strain-rate vs forces (pressure, viscous stress).
  • Key measures: \( \nabla\!\cdot\!\mathbf{u} \) (dilatation), \( \boldsymbol{\omega}=\nabla\times\mathbf{u} \).
  • Forces: body (gravity) & surface (stress \( \sigma_{ij} \)).
  • Incompressible: \( \nabla\cdot\mathbf{u}=0 \); streamlines & potentials for irrotational parts.

Why it matters

  • Sets the tensor/operator language for Navier–Stokes.
  • Links vortices/streamlines to math used in BL & potential flow.
2) Subscripts & Index Notation
Component indices
  • \( i,j,k\in\{1,2,3\} \) label \(x_1,x_2,x_3\) (aka \(x,y,z\)); \(u_i\Rightarrow (u,v,w)\).
Einstein summation
  • Repeat index ⇒ sum. Example \(u_i u_i=|\mathbf{u}|^2\).
  • \( \mathbf{a}\!\cdot\!\mathbf{b}=a_i b_i \), \( (\nabla\times\mathbf{u})_i=\varepsilon_{ijk}\partial u_k/\partial x_j \).
Stress & strain
  • \( \sigma_{ij} \) symmetric for simple fluids; traction \(t_i=\sigma_{ij}n_j\).
  • \( e_{ij}=\tfrac12(\partial_i u_j+\partial_j u_i) \).
Helper tensors
  • Kronecker \( \delta_{ij} \), Levi-Civita \( \varepsilon_{ijk} \).
Coordinate subscripts
  • Polar: \(u_r,u_\theta\); Cyl: \(u_r,u_\theta,u_z\); Sph: \(u_r,u_\theta,u_\phi\).
3) General Symbols
  • Boldface vectors (e.g., u).
  • \(\mathbf{x},\mathbf{x}'\); \(r=|\mathbf{x}|\); relative \(\mathbf{s}=\mathbf{x}-\mathbf{x}'\).
  • Speed \(q=|\mathbf{u}|\); time \(t\).
  • Material derivative \( \tfrac{D}{Dt}=\partial_t+\mathbf{u}\cdot\nabla \).
4) Coordinates & Velocity Components
SystemCoordinatesVelocity
Cartesian\(x,y,z\) or \(x_1,x_2,x_3\)\(u,v,w\) or \(u_1,u_2,u_3\)
Polar (2D)\(r,\theta\)\(u_r,u_\theta\)
Spherical\(r,\theta,\phi\)\(u_r,u_\theta,u_\phi\)
Cylindrical\(r,\theta,z\)\(u_r,u_\theta,u_z\)
5) Flow Quantities
  • Dilatation \( \Delta=\nabla\cdot\mathbf{u} \).
  • Vorticity \( \boldsymbol{\omega}=\nabla\times\mathbf{u} \).
  • Rate-of-strain \( e_{ij}=\tfrac12(\partial_i u_j+\partial_j u_i) \).
  • Stream function \( \psi \) (2D/axisymmetric) enforces continuity.
6) Stream-Function Formulas

2D (x–y)

\( \mathbf{B}=(0,0,\psi),\quad u=\partial\psi/\partial y,\; v=-\partial\psi/\partial x \)

Axisymmetric (Cylindrical \(r,\theta,z\))

\( B_\theta=\psi/r,\; u_r=\tfrac{1}{r}\partial_z\psi,\; u_z=-\tfrac{1}{r}\partial_r\psi \)

Axisymmetric (Spherical \(r,\theta,\phi\))

\( B_\phi=\psi/(r\sin\theta),\; u_r=\tfrac{1}{r^2\sin\theta}\partial_\theta\psi,\; u_\theta=-\tfrac{1}{r\sin\theta}\partial_r\psi \)

📖 Panton — Chapter 1 (Intro to Incompressible Flow)

Main idea: Foundation for incompressible flow — physics, assumptions, and math framework.

1.1 What is Incompressible Flow?

  • Density ~ constant; often valid for Mach \(M \lesssim 0.3\).

1.2–1.4 Field Variables & Material Derivative

  • \( \mathbf{u}(x,t),\,p(x,t),\,T,\,\rho,\,\mu \); Eulerian vs Lagrangian; \( \frac{D}{Dt}=\partial_t+\mathbf{u}\cdot\nabla \).

1.5–1.7 Conservation & Vorticity

  • Continuity \( \nabla\cdot\mathbf{u}=0 \); momentum (leads to N–S); \( \boldsymbol{\omega}=\nabla\times\mathbf{u} \).

1.8–1.9 Streamlines & Reynolds number

  • Streamlines/pathlines; \( \mathrm{Re}=\rho U L/\mu \).

Ref: Panton, Incompressible Flow, Ch. 1.

🖼️ Panton — Figure: Water Tunnel Propeller Test

Adapted from: Panton, R. L. Incompressible Flow, 6th ed., Wiley, 2013.

Water Tunnel Test of a Propeller
Tip vortex core: Low pressure → cavitation; vortices indicate rotation \( \boldsymbol{\omega} \).
Why it matters Cavitation impacts vibration/erosion; links visuals to vorticity & thrust.
🖼️ Panton — Figure: Coordinate Systems & Stream Function

Adapted from: Panton, R. L. Incompressible Flow, 6th ed., Wiley, 2013.

Coordinate systems and stream-function context

Pick symmetry-friendly coordinates; use \( \psi \) to enforce \( \nabla\cdot\mathbf{u}=0 \) automatically.

🌀 Extra: Figure 1.1 — Ship Propeller Tip Vortex
Visible spiralCavitation bubbles mark coherent vortex cores.
PhysicsLarge \( \boldsymbol{\omega}=\nabla\times\mathbf{u} \) aligned with vortex axis.
🌀 Extra: Figure 1.2 — Aircraft Wingtip Vortex
Why it formsPressure difference drives roll-up around tips → trailing vortices.
PersistenceDiffuses slowly; links to lift–circulation.
ℹ️ Context — Why Panton shows these
  • Visual hooks for vorticity & circulation before equations.
  • Parallels across water/air flows; prepares for BL and potential-flow topics.

Panton, Chapter 1 — Study Guide (1.1–1.6)

Quick, skimmable cards with collapsible details. Click any tag to jump.
1.1 Solids, Liquids, and Gases
Quick Summary What makes a fluid, and when gases act “incompressible”

Big picture

A fluid cannot sustain static shear—it keeps deforming. Liquids are nearly incompressible; gases are compressible, but at low Mach many gas flows behave like incompressible.

Use it

If density changes are tiny and \(M=U/c\lesssim 0.3\), model as incompressible even in air.

Full Notes Practical contrasts & rule of thumb

Liquids

Nearly fixed volume; surface tension matters; weak compressibility.

Gases

Fill container; \(p\leftrightarrow\rho\) tightly coupled; shocks/waves possible at higher Mach.

Thumb rule

“Incompressible” is usually fine if \( \Delta\rho/\rho\ll 1 \) and \( M\lesssim 0.3 \).

1.2 The Continuum Hypothesis
Quick Summary Fields are limits over shrinking volumes

Definition idea

  • Density \(\rho(\mathbf{x})=\lim_{V\to0}\frac{\sum m_i}{V}\)
  • Velocity \(\mathbf{v}(\mathbf{x})=\lim_{V\to0}\frac{\sum m_i\mathbf{v}_i}{\sum m_i}\)

Shrink \(V\) while still \(\gg\) molecular scales and \(\ll\) flow scales → “plateau” values.

Fails when

Mean free path or particle size \(\sim\) geometry (Kn not small) → rarefied gas, microflows, Brownian/colloids.

Full Notes Plateau picture

As \(V\) shrinks from large to small, averages settle (plateau). Past ~molecular scales, noise explodes—work on the plateau.

1.3 Space, Time & Control Regions
Quick Summary FR / MR / VR / AR regions & Galilean invariance

Region types

  • FR Fixed in space (fluid crosses the boundary).
  • MR Material region; boundary moves with fluid (no crossing).
  • VR Rigid motion with constant volume.
  • AR Anything useful (hybrids / analysis-friendly shapes).

Physics

Basic laws keep the same form in any inertial (Galilean) frame.

Full Notes Examples & checks
  • Blower in lab frame → FR.
  • Rising bubble skin → MR (surface speed = local fluid speed).
  • Rocket shell following COM with fixed volume → VR.
1.4 Density, Velocity & Internal Energy
Quick Summary Clean definitions + split total KE into bulk + random

Definitions

  • Density \( \rho=\lim_{V\to0}\frac{\sum m_i}{V} \)
  • Mass-avg velocity \( \mathbf{v}=\lim_{V\to0}\frac{\sum m_i\mathbf{v}_i}{\sum m_i} \)
  • Random velocity \( \mathbf{v}'_i=\mathbf{v}_i-\mathbf{v} \)
  • KE split \( \sum \tfrac12 m_i \mathbf{v}_i^2=\sum \tfrac12 m_i \mathbf{v}'^{\,2}_i+\tfrac12\,\mathbf{v}^2 \sum m_i \)

Symbols

\( \mathbf{v}_i \) — microscopic velocity of particle \(i\)
\( \mathbf{v} \) — bulk mass-weighted velocity
\( \mathbf{v}'_i \) — velocity relative to the bulk
\( \tfrac12 \mathbf{v}^2 \sum m_i \) — bulk-flow KE
\( \sum \tfrac12 m_i \mathbf{v}'^{\,2}_i \) — microscopic KE in internal energy

Why it holds

Let \( \mathbf{v}_i=\mathbf{v}+\mathbf{v}'_i \). The cross term vanishes since \( \sum m_i\mathbf{v}'_i=\mathbf{0} \).

Quick check

Prove \( \sum m_i\mathbf{v}'_i=\mathbf{0} \) from the definition of \( \mathbf{v} \).

Key ideas

  • Internal energy includes random translation, rotation, vibration, potentials.
  • Molar-avg equals mass-avg only for uniform composition.

Example

Binary gas with diffusion: species speeds differ from \( \mathbf{v} \) → diffusive fluxes even if the bulk is at rest.

1.5 Interfaces Between Phases
Quick Summary Simple interface model that works most of the time

Model

Zero-thickness interface; \( \rho \) may jump; tangential \( \mathbf{v} \) and \( T \) continuous; normal velocity \( v_n \) may jump with mass transfer.

Mass-flux match

\( \rho_\ell v_{n,\ell} = \rho_v v_{n,v} \).

Full Notes No-slip & caveats

Key ideas

No-slip tangentially in most cases → same tangential \( \mathbf{v} \) on both sides. With mass transfer, differing normal velocities expected because \( \rho \) differs.

Watch out

Surface tension/surfactants/Marangoni can alter balances—this is the simple model.

Figure 1.5 Liquid–gas interface — what’s continuous, what can jump
Figure 1.5
Click to view full-size.
1.6 Conclusions & Limits of Continuum
Quick Summary When continuum breaks & what to use instead

Breaks when

Body scale \(L\) \(\sim\) molecular size or mean free path \( \lambda \). Knudsen \( \mathrm{Kn}=\lambda/L \) not small.

Then use

Kinetic/DSMC for gases; stochastic/colloidal models for liquids; slip models in microflows.

Full Notes Practical checks
  • Air at STP: \( \lambda \approx 0.1\,\mu\text{m} \). If \( L \gg 10\lambda \), continuum is usually safe.
  • Incompressible gas flows: typically \( M\lesssim 0.3 \) and small \( \Delta \rho/\rho \).
Figure 1.6 Failures of the Continuum Assumption
Figure 1.6
Click to view full-size.

📚 Kundu Nomenclature — Full Reference Click to open