📚 Kundu Nomenclature — Full Reference Click to open
📚 Kundu Nomenclature — Full Reference
Symbols follow Kundu, Cohen & Dowling (6e), with common additions from Batchelor and Panton. Greek names shown in gray chips for clarity.
📑 Concept Index (quick clusters)
Symbol | Meaning |
---|---|
u, v, w | Velocity components (x, y, z). See U, V, W. |
u | Velocity vector (u, v, w). See U. |
U, Ue, UCL, UN | Mean/edge/centerline/far-upstream speeds. See U. |
x, y, z; x; xi | Cartesian coordinates; position vector; components. See X, Y, Z. |
r | Radial coordinate/distance. See R. |
Γ (Gamma), ω (omega) | Circulation; vorticity vector. See G, O. |
Symbol | Meaning |
---|---|
p, p0, patm, P | Static / total / atmospheric / mean pressure. See P. |
τ (tau), τij, σij (sigma) | Shear stress; stress tensor; Cauchy stress. See T, S. |
f, F | Surface traction per area; force vector. See F. |
D, D, L | Drag; Lift. See D, L. |
Symbol | Meaning |
---|---|
T, Tw, T0 | Temperature; wall / stagnation temperature. See T. |
ρ (rho) | Density. See R. |
μ (mu), μb (mu) | Dynamic viscosity; bulk viscosity. See M. |
ν (nu) | Kinematic viscosity. See V. |
k | Thermal conductivity (or wavenumber). See K. |
cp, cv | Specific heats. See C. |
q, Q | Speed magnitude / dynamic pressure / heat flux / volumetric flow (context). See Q. |
Symbol | Meaning |
---|---|
Re, Pr, Sc, Sh, Nu | Reynolds, Prandtl, Schmidt, Sherwood, Nusselt numbers. See A–Z. |
Fr, Ro, Ri, Rf, Ra | Froude, Rossby, Richardson, Flux Richardson, Rayleigh. See A–Z. |
Ma (M), Kn, We, Bo, St, Ta | Mach, Knudsen, Weber, Bond, Strouhal, Taylor. See A–Z. |
Symbol | Meaning |
---|---|
ε (epsilon), ε (epsilon) | Dissipation rate of TKE (instantaneous / average). |
e, e | Turbulent kinetic energy (per mass); average fluctuation energy. |
u*, κ (kappa) | Friction velocity; von Kármán constant. |
δ (delta), δ*, θ (theta) | BL thickness; displacement thickness; momentum thickness. |
Symbol | Meaning |
---|---|
D/Dt | Material derivative. |
Δ (Delta) | Dilatation symbol (∇·u). |
∇·, ∇×, ∇² | Divergence, curl, Laplacian. |
Notation (overbars, primes, subscripts, etc.)
Mark | Meaning |
---|---|
f | Background / average value; also Darcy friction factor (context). |
f̃ | Full-field value. |
f′ | Derivative of f or perturbation from reference state. |
f* | Complex conjugate or sonic-condition value. |
f+ | Law-of-the-wall value. |
A
Symbol | Meaning |
---|---|
α (alpha) | Contact angle; thermal expansion coefficient; angle of rotation/attack; iteration index. |
a | Area (triangular); cylinder/sphere radius; amplitude. |
a | Generic vector; Lagrangian acceleration. |
A | Generic second-order tensor. |
A, 𝔄 | Constant; area/surface; wing planform area. |
A* | Control surface; sonic throat area. |
B
Symbol | Meaning |
---|---|
β (beta) | Angle of rotation; constituent-density coefficient; convergence-acceleration parameter; variation of Coriolis frequency with latitude; camber parameter. |
b | Generic vector; control-surface velocity (in control-volume sketches). |
B | Constant; Bernoulli function; log-law intercept parameter. |
B, Bij | Generic second-order (or higher) tensor. |
Bo | Bond number. (Bo, not Bo) |
C
Symbol | Meaning |
---|---|
c | Speed of sound; phase speed; chord length (airfoils). |
c | Phase-velocity vector. |
cg, cg | Group-velocity magnitude / vector. |
χ (chi) | Scalar stream function (context dependent in figures). |
°C | Degrees Celsius. |
C | Generic constant; hypotenuse length; closed contour. |
Ca | Capillary number. |
Cf | Skin-friction coefficient. |
Cp | Pressure coefficient. |
cp, cv | Specific heat at constant pressure / constant volume. |
CD, CL | Drag & lift coefficients. |
Cij | Direction-cosine matrix between original and rotated axes. |
𝒞± | Characteristic curves along which invariants I± are constant. |
D
Symbol | Meaning |
---|---|
d | Diameter; distance; fluid-layer depth. |
d | Dipole-strength vector; displacement vector. |
δ (delta) | Dirac delta; similarity-variable length; boundary-layer thickness; generic length increment; flow-deflection angle. |
δ (delta) | Average boundary-layer thickness. |
δ* | Boundary-layer displacement thickness. |
δij | Kronecker delta. |
δ99 | 99% boundary-layer thickness. |
Δ (Delta) | Dilatation (∇·u) — Batchelor notation. |
D | Distance; drag force; diffusion coefficient. |
D | Drag force vector. |
Di | Lift-induced drag. |
D/Dt | Material derivative. |
DT | Turbulent diffusivity of particles. |
𝒟 | Generalized field derivative (abstract notation). |
E
Symbol | Meaning |
---|---|
ε (epsilon) | Roughness height; kinetic-energy dissipation rate; a small distance; fineness ratio h/L; downwash angle (context). |
ε (epsilon) | Average dissipation rate of turbulent kinetic energy. |
εT (epsilon) | Average dissipation rate of the variance of temperature fluctuations. |
εijk (epsilon) | Alternating (Levi-Civita) tensor. |
e | Internal energy per unit mass. |
ei | Unit vector in the i direction. |
e | Average kinetic energy of turbulent fluctuations. |
Ec | Eckert number. |
Ek, Ep | Kinetic / potential energy per unit horizontal area. |
E | Numerical error; average energy per unit horizontal area; Ekman number; kinetic energy of the mean flow (context-dependent). |
EF | Time-average energy flux per unit length of wave crest. |
F
Symbol | Meaning |
---|---|
f | Generic function; Maxwell distribution function; Helmholtz free energy per unit mass; longitudinal correlation coefficient; Coriolis frequency; dimensionless friction parameter (context-dependent). |
f (Darcy) | Darcy friction factor. |
fi | Unsteady body-force distribution. |
φ (phi) | Velocity potential; also an angle (context). |
f | Surface (traction) force vector per unit area. |
F | Force magnitude; generic flux/field; profile function. |
Ff | Perimeter friction force. |
F | Force vector; average wave-energy flux vector. |
𝓕 | Body-force potential; undetermined spectrum function (context). |
FD | Drag force (instantaneous/average, context). |
FL | Lift force. |
Fr | Froude number. |
G
Symbol | Meaning |
---|---|
γ (gamma) | Ratio of specific heats; velocity gradient; vortex-sheet strength; generic dependent variable. |
γ̇ (gamma) | Shear rate. |
g | Body force per unit mass (e.g., gravity). |
g | Acceleration of gravity; undetermined function; transverse correlation coefficient (context). |
g′ | Reduced gravity. |
Γ (Gamma) | Circulation. |
Ga | Adiabatic vertical temperature gradient (lapse rate). |
Γa (Gamma) | Circulation due to absolute vorticity. |
G | Gravitational constant; profile function (context). |
Gn | Fourier-series coefficient. |
G | Center of mass / center of vorticity (context). |
H
Symbol | Meaning |
---|---|
h | Enthalpy per unit mass; height; gap height; viscous-layer thickness. |
ℏ | Planck’s constant (reduced). |
η (eta) | Free-surface shape; waveform; similarity variable; Kolmogorov microscale (context). |
ηT (eta) | Batchelor microscale. |
H | Atmospheric scale height; water depth; step function; shape factor; profile function (context). |
I
Symbol | Meaning |
---|---|
I | Moment of inertia (context); integral/indicator (context); identity in some texts (else use δij). |
I | Identity tensor (sometimes 𝕀); often implied by δij. |
I± | Characteristic invariants along 𝒞± (1-D compressible waves). |
J
Symbol | Meaning |
---|---|
J | Jacobian determinant (coordinate transforms); jet momentum flux (context). |
Jm | Diffusive mass-flux vector (species transport). |
Jn | Bessel function (order n)—pipe/duct eigenproblems. |
K
Symbol | Meaning |
---|---|
k | Thermal conductivity; wavenumber magnitude (context). |
κ (kappa) | von Kármán constant (~0.41) in wall turbulence. |
K | Bulk modulus; kinetic energy (context). |
Kn | Knudsen number. |
L
Symbol | Meaning |
---|---|
ℓ | Characteristic length / mean free path / mixing length (context). |
L | Length; lift; Rossby radius; aspect ratio (context). |
LM | Monin–Obukhov length (stratified BLs). |
M
Symbol | Meaning |
---|---|
m | Mass; slope/index (context). |
μ (mu) | Dynamic viscosity. |
μb (mu) | Bulk (second) viscosity. |
M | Mach number; mass (context). |
Mw | Molecular weight. |
N
Symbol | Meaning |
---|---|
n | Number density; unit normal (vector) (context). |
N | Brunt–Väisälä (buoyancy) frequency. |
Nu | Nusselt number. |
ν (nu) | Kinematic viscosity (also listed under V). |
O
Symbol | Meaning |
---|---|
O | Origin (in sketches/derivations). |
Ω (Omega) | Planetary rotation rate / angular velocity of a rotating frame. |
ω (omega) | Vorticity vector; angular frequency (context). |
P
Symbol | Meaning |
---|---|
p | Static pressure. |
p0 | Total (stagnation) pressure; or reference pressure at z=0 (context). |
patm | Atmospheric pressure. |
P | Power; average/mean pressure (context). |
Pr | Prandtl number. |
ψ (psi) | Stream function (2-D incompressible; vector Ψ in some contexts). |
Π (Pi) | Π-groups (dimensionless products) in Buckingham-Π analysis. |
Q
Symbol | Meaning |
---|---|
Q | Volumetric flow rate; total heat per unit mass (context). |
q | Dynamic pressure q = ½ ρ U2 (aero); also generic heat flux (context). |
q (Batchelor) | Speed magnitude |u|. |
qi | Heat-flux vector components. |
qs | 2-D point source strength. |
R
Symbol | Meaning |
---|---|
r | Radial coordinate / distance from an origin or axis. |
ρ (rho) | Density. |
R | Gas constant (specific); radius (context). |
Ru | Universal gas constant. |
Ri | Radius of curvature (streamline geometry). |
Re | Reynolds number. |
Ra | Rayleigh number. |
Ri | Richardson number. |
Rf | Flux Richardson number. |
Ro | Rossby number. |
S
Symbol | Meaning |
---|---|
s | Entropy; arc length; salinity; wingspan (aero) — context dependent. |
s (vector) | Relative position / displacement vector. |
S | Area; salinity; scattered-light intensity (context). |
σ (sigma) | Surface tension; normal stress (context). |
σij (sigma) | Cauchy stress tensor components (Batchelor). |
eij | Rate-of-strain tensor (Batchelor notation). |
Sij | Strain-rate (rate-of-strain) tensor. |
Sc | Schmidt number. |
Sh | Sherwood number. |
St | Strouhal number. |
T
Symbol | Meaning |
---|---|
t | Time. |
T | Temperature. |
θ (theta) | Potential temperature; generic angle (context). |
τ (tau) | Shear stress; relaxation time (context). |
τij | Stress tensor components. |
ti | Traction component: ti = σij nj. |
Tw, T0 | Wall temperature; stagnation (total) temperature. |
Ta | Taylor number. |
U
Symbol | Meaning |
---|---|
u | Velocity component along x (streamwise). |
u | Velocity vector (u, v, w). |
u* | Friction velocity √(τw/ρ). |
U | Mean / outer / free-stream speed (context). |
Ue, UCL, UN | Edge velocity (BL); centerline velocity (pipe/jet); far-upstream velocity. |
V
Symbol | Meaning |
---|---|
v | Velocity component along y (often wall-normal in BL); molecular speed (kinetic theory). |
v | Molecular velocity vector (kinetic theory); generic vector. |
V | Volume; material volume; average cross-stream velocity; average velocity magnitude; complex velocity (context). |
V* | Control volume. |
ν (nu) | Kinematic viscosity (also listed under N). |
v | Mean/averaged velocity (context). |
W
Symbol | Meaning |
---|---|
w | Vertical velocity component; downwash velocity (aero); complex potential W (context). |
W | Thermodynamic work per unit mass; wake function (context). |
Ẇ | Rate of energy input from mean flow (turbulence budgets). |
We | Weber number. |
X
Symbol | Meaning |
---|---|
x | First Cartesian coordinate (streamwise). |
x | Position vector. |
xi | Components of position vector. |
ξ (xi) | Similarity variable / coordinate in some transforms (context). |
Y
Symbol | Meaning |
---|---|
y | Second Cartesian coordinate (wall-normal in BL). |
Y | Mass fraction. |
YCL | Centerline mass fraction (jet mixing problems). |
Υ (Upsilon) | Used rarely; problem-dependent constant (context). |
Z
Symbol | Meaning |
---|---|
z | Third Cartesian coordinate; complex variable (potential flow). |
ζ (zeta) | Interface displacement (free surface); relative vorticity (geophysical context). |
Z | Geopotential height / altitude of a pressure surface (synoptic examples). |
Problem 4.56 — Beginner-Friendly Step-by-Step (Print)
0) The Big Picture
2-D steady conduction in a wall with uniform volumetric generation, \( \dot q = 1\times10^{6}\ \mathrm{W/m^3} \). Grid \( \Delta x=\Delta y=\Delta=0.025\ \mathrm{m} \). Thermal conductivity \( k=10\ \mathrm{W/(m\cdot K)} \).
Given nodal temperatures (°C)
Node | Temp |
---|---|
\(T_2\) | 95.47 |
\(T_3\) | 117.3 |
\(T_5\) | 79.79 |
\(T_6\) | 77.29 |
\(T_8\) | 87.28 |
\(T_{10}\) | 77.65 |
Convection boundaries
Inner (Surface B): \(h_i=500,\ T_{\infty,i}=50^{\circ}\mathrm{C}\).
Outer (Surface A): \(h_o=250,\ T_{\infty,o}=25^{\circ}\mathrm{C}\).
Unknowns
\(T_1, T_4, T_7, T_9\), then \(q'_A\), \(q'_B\), and overall balance.
Handy constants
- \( \dfrac{h_i \Delta}{k}=1.25 \)
- \( \dfrac{h_o \Delta}{k}=0.625 \)
- \( \dfrac{\dot q\,\Delta^2}{4k}=15.625 \)
- \( \dfrac{\dot q\,\Delta^2}{2k}=31.25 \)
Variable Definitions
- \(T_i\) Temperature at node i (°C)
- \(k\) Thermal conductivity (W/m·K)
- \(\Delta\) Grid spacing (m)
- \(\dot q\) Heat generation rate (W/m³)
- \(h_i\) Inner convection coeff (W/m²·K)
- \(h_o\) Outer convection coeff (W/m²·K)
- \(T_{\infty,i}\) Inner fluid temp (°C)
- \(T_{\infty,o}\) Outer fluid temp (°C)
- \(A\) Control-volume face area (m²)
- \(V\) Control-volume size (m³/unit depth)
- \(q'_A\) Heat flux leaving surface A (W/m)
- \(q'_B\) Heat flux entering surface B (W/m)
Quick legend: what all the T’s mean
Symbol | Meaning / location |
---|---|
T₁ | Top-left corner of solid (top & left insulated) |
T₂ | Inner surface B, north of the notch (above T₄) |
T₃ | Interior west of T₄ (also above T₇) |
T₄ | Re-entrant corner (north & east faces convect to inner fluid) |
T₅ | Interior east of T₄ (above T₉) |
T₆ | Inner-surface node on east side (given) |
T₇ | Outer surface A corner at bottom-left (south face convects) |
T₈ | Interior just east of T₇ |
T₉ | Bottom edge (between T₈ and T₁₀), south face convects |
T₁₀ | Bottom-edge corner at right end of the bottom strip |
T∞,i and T∞,o are the inner/outer fluid temps; hi, ho their convection coefficients.
1) Universal Recipe (works at any node)
\[ \sum_{\text{faces}} k\frac{A}{L_n}(T_{N}-T_P) \;+\; \sum_{\text{conv}} hA\,(T_\infty - T_P) \;+\; \dot q\,V \;=\; 0 \]
- Interior CV: \(V=\Delta^2\); edge: \(V=\tfrac12\Delta^2\); corner: \(V=\tfrac14\Delta^2\); re-entrant (node 4): \(V=\tfrac34\Delta^2\).
- Half faces use \(A=\tfrac{\Delta}{2}\); center-to-center gaps are \(\Delta\) (or \(\tfrac{\Delta}{2}\) to a boundary).
2a) Node 1 — Corner (insulated top & left)
East & south conduct to \(T_2\), \(T_3\); west & top insulated (no flux); generation adds \(+\dot q V\).
\[ 0 = k\frac{(\Delta/2)(T_2-T_1)}{\Delta} + k\frac{(\Delta/2)(T_3-T_1)}{\Delta} + \dot q\Big(\tfrac14\Delta^2\Big) \]
\[ \Rightarrow\; T_1 = \frac{T_2+T_3}{2} + \frac{\dot q\,\Delta^2}{4k} \approx \boxed{122.0^\circ\mathrm{C}} \]
2b) Node 4 — Re-entrant corner touching inner fluid (north & east)
\[ T_4=\frac{T_2+2T_3+T_5+2T_8+2\left(\tfrac{h_i\Delta}{k}\right)T_{\infty,i} +\tfrac{3\dot q\,\Delta^2}{2k}} {6+2\left(\tfrac{h_i\Delta}{k}\right)} \approx \boxed{94.50^\circ\mathrm{C}} \]
2c) Node 7 — Outer surface A (corner)
\[ T_7=\frac{T_3+T_8+\left(\tfrac{h_o\Delta}{k}\right)T_{\infty,o} +\tfrac{\dot q\,\Delta^2}{2k}} {2+\left(\tfrac{h_o\Delta}{k}\right)} \approx \boxed{95.80^\circ\mathrm{C}} \]
2d) Node 9 — Outer bottom edge (not a corner)
\[ T_9=\frac{T_5+\tfrac12T_8+\tfrac12T_{10} +\left(\tfrac{h_o\Delta}{k}\right)T_{\infty,o} +\tfrac{\dot q\,\Delta^2}{2k}} {2+\left(\tfrac{h_o\Delta}{k}\right)} \approx \boxed{79.67^\circ\mathrm{C}} \]
3) Surface Heat Rates (per unit length)
Outer surface \(A\) (bottom; nodes 7–10)
\[ \begin{aligned} q'_A &= h_o\!\left[\tfrac{\Delta}{2}(T_7 - T_{\infty,o}) + \Delta(T_8 - T_{\infty,o}) + \Delta(T_9 - T_{\infty,o}) + \tfrac{\Delta}{2}(T_{10} - T_{\infty,o})\right] \\ &\approx \boxed{1117\ \mathrm{W/m}} \end{aligned} \]
Inner surface \(B\) (nodes 2, 4, 5, 6)
\[ \begin{aligned} q'_B &= h_i\!\left[\tfrac{\Delta}{2}(T_{\infty,i}-T_2) + \Delta(T_{\infty,i}-T_5) + \tfrac{\Delta}{2}(T_{\infty,i}-T_6) + \Delta(T_{\infty,i}-T_4)\right] \\ &\approx \boxed{-1383\ \mathrm{W/m}} \end{aligned} \]
4) Energy-Balance Check
\[ \dot E'_{\text{in}}-\dot E'_{\text{out}}+\dot E'_{\text{gen}}=0 \quad\Rightarrow\quad -q'_A+q'_B+\dot q\,V' = 0 \]
\[ -1117 - 1383 + 2500 = 0 \quad \Longrightarrow \quad \text{balanced}\ \checkmark \]
Consistent with \(\dot q=10^6\ \mathrm{W/m^3}\) and \(V' = 2.5\times10^{-3}\ \mathrm{m^2}\) for the L-section.
Thermal Interview Crash Sheet
1) Lumped-Capacitance Heating/Cooling
Use when internal temperature gradients are negligible (body ~ isothermal).
Biot Number Check
Characteristic length (body dependent), e.g. slab \(L_c = \dfrac{V}{A} = \dfrac{t}{2}\), sphere \(L_c=\dfrac{R}{3}\).
Governing Solution (Newton’s Law of Cooling)
Interview Checklist
- State assumption: “Check \(Bi<0.1\) for lumped validity.”
- Compute \(Bi\). If valid → use exponential form; compute time constant \( \tau \).
- Report \(T(t)\) or dimensionless \( \theta(t) = \dfrac{T-T_\infty}{T_i-T_\infty} = e^{-t/\tau} \).
- Limits: Large Bi → use transient slab (below).
Quick Numeric Example
Given Al sphere: \(k=205\,\mathrm{W/(m\cdot K)}\), \(\rho c_p=2.43\times10^6\,\mathrm{J/(m^3\cdot K)}\), \(h=20\,\mathrm{W/(m^2\cdot K)}\), \(R=25\,\mathrm{mm}\).
Use \( T(t)=T_\infty+(T_i-T_\infty)e^{-t/\tau} \) as needed.
2) Transient Slab (“Thermal Block”) with Convection
Use when internal gradients matter (larger bodies or higher \(h\)). Treat as a slab of half-thickness \(L\), with convection at surfaces.
Decision Flow
- Biot: \(Bi = \dfrac{hL}{k}\). If \(Bi<0.1\) → lumped (section 1).
- Otherwise use 1-term series or Heisler charts (transient slab).
- Fourier: \(Fo=\dfrac{\alpha t}{L^2}\) with \( \alpha=\dfrac{k}{\rho c_p} \).
1-Term Slab Solution (common interview acceptance)
Find \( \lambda_1 \) from the transcendental: \( \lambda_1 \tan\lambda_1 = Bi \).
- Centerline \(x=0\): \( \theta(0,t)=A_1 e^{-\lambda_1^2 Fo} \).
- Surface \(x=L\): \( \theta(L,t)=A_1 \cos\lambda_1 \, e^{-\lambda_1^2 Fo} \).
- \( \theta \equiv \dfrac{T-T_\infty}{T_i-T_\infty} \).
Heat to/from the Fluid (surface flux)
Use this when asked for “heat rate to the fluid” at a face.
Interview Micro-Checklist (slab)
- Define \(L\) (half-thickness), compute \(Bi\) and \(Fo\).
- State the governing form (1-term or charts), solve \( \lambda_1 \tan\lambda_1=Bi \) → get \(A_1\).
- Report \(T\) or \( \theta \) at center/surface; give \( q''(t) \) if asked about heat to the fluid.
Quick Formulas
Biot & Fourier
Lumped Time Constant
Energy Balance (fast check)
At steady state: net in – out + generation = 0. Use this as a 10-second sanity check on any fin/box/slab total.