📚 Kundu Nomenclature — Full Reference Click to open

📚 Kundu Nomenclature — Full Reference

Symbols follow Kundu, Cohen & Dowling (6e), with common additions from Batchelor and Panton. Greek names shown in gray chips for clarity.

📑 Concept Index (quick clusters)
SymbolMeaning
u, v, wVelocity components (x, y, z). See U, V, W.
uVelocity vector (u, v, w). See U.
U, Ue, UCL, UNMean/edge/centerline/far-upstream speeds. See U.
x, y, z; x; xiCartesian coordinates; position vector; components. See X, Y, Z.
rRadial coordinate/distance. See R.
Γ (Gamma), ω (omega)Circulation; vorticity vector. See G, O.
SymbolMeaning
p, p0, patm, PStatic / total / atmospheric / mean pressure. See P.
τ (tau), τij, σij (sigma)Shear stress; stress tensor; Cauchy stress. See T, S.
f, FSurface traction per area; force vector. See F.
D, D, LDrag; Lift. See D, L.
SymbolMeaning
T, Tw, T0Temperature; wall / stagnation temperature. See T.
ρ (rho)Density. See R.
μ (mu), μb (mu)Dynamic viscosity; bulk viscosity. See M.
ν (nu)Kinematic viscosity. See V.
kThermal conductivity (or wavenumber). See K.
cp, cvSpecific heats. See C.
q, QSpeed magnitude / dynamic pressure / heat flux / volumetric flow (context). See Q.
SymbolMeaning
Re, Pr, Sc, Sh, NuReynolds, Prandtl, Schmidt, Sherwood, Nusselt numbers. See A–Z.
Fr, Ro, Ri, Rf, RaFroude, Rossby, Richardson, Flux Richardson, Rayleigh. See A–Z.
Ma (M), Kn, We, Bo, St, TaMach, Knudsen, Weber, Bond, Strouhal, Taylor. See A–Z.
SymbolMeaning
ε (epsilon), ε (epsilon)Dissipation rate of TKE (instantaneous / average).
e, eTurbulent kinetic energy (per mass); average fluctuation energy.
u*, κ (kappa)Friction velocity; von Kármán constant.
δ (delta), δ*, θ (theta)BL thickness; displacement thickness; momentum thickness.
SymbolMeaning
D/DtMaterial derivative.
Δ (Delta)Dilatation symbol (∇·u).
∇·, ∇×, ∇²Divergence, curl, Laplacian.

Notation (overbars, primes, subscripts, etc.)

MarkMeaning
fBackground / average value; also Darcy friction factor (context).
Full-field value.
f′Derivative of f or perturbation from reference state.
f*Complex conjugate or sonic-condition value.
f+Law-of-the-wall value.

A

SymbolMeaning
α (alpha)Contact angle; thermal expansion coefficient; angle of rotation/attack; iteration index.
aArea (triangular); cylinder/sphere radius; amplitude.
aGeneric vector; Lagrangian acceleration.
AGeneric second-order tensor.
A, 𝔄Constant; area/surface; wing planform area.
A*Control surface; sonic throat area.

↑ Top

B

SymbolMeaning
β (beta)Angle of rotation; constituent-density coefficient; convergence-acceleration parameter; variation of Coriolis frequency with latitude; camber parameter.
bGeneric vector; control-surface velocity (in control-volume sketches).
BConstant; Bernoulli function; log-law intercept parameter.
B, BijGeneric second-order (or higher) tensor.
BoBond number. (Bo, not Bo)

↑ Top

C

SymbolMeaning
cSpeed of sound; phase speed; chord length (airfoils).
cPhase-velocity vector.
cg, cgGroup-velocity magnitude / vector.
χ (chi)Scalar stream function (context dependent in figures).
°CDegrees Celsius.
CGeneric constant; hypotenuse length; closed contour.
CaCapillary number.
CfSkin-friction coefficient.
CpPressure coefficient.
cp, cvSpecific heat at constant pressure / constant volume.
CD, CLDrag & lift coefficients.
CijDirection-cosine matrix between original and rotated axes.
𝒞±Characteristic curves along which invariants I± are constant.

↑ Top

D

SymbolMeaning
dDiameter; distance; fluid-layer depth.
dDipole-strength vector; displacement vector.
δ (delta)Dirac delta; similarity-variable length; boundary-layer thickness; generic length increment; flow-deflection angle.
δ (delta)Average boundary-layer thickness.
δ*Boundary-layer displacement thickness.
δijKronecker delta.
δ9999% boundary-layer thickness.
Δ (Delta)Dilatation (∇·u) — Batchelor notation.
DDistance; drag force; diffusion coefficient.
DDrag force vector.
DiLift-induced drag.
D/DtMaterial derivative.
DTTurbulent diffusivity of particles.
𝒟Generalized field derivative (abstract notation).

↑ Top

E

SymbolMeaning
ε (epsilon)Roughness height; kinetic-energy dissipation rate; a small distance; fineness ratio h/L; downwash angle (context).
ε (epsilon)Average dissipation rate of turbulent kinetic energy.
εT (epsilon)Average dissipation rate of the variance of temperature fluctuations.
εijk (epsilon)Alternating (Levi-Civita) tensor.
eInternal energy per unit mass.
eiUnit vector in the i direction.
eAverage kinetic energy of turbulent fluctuations.
EcEckert number.
Ek, EpKinetic / potential energy per unit horizontal area.
ENumerical error; average energy per unit horizontal area; Ekman number; kinetic energy of the mean flow (context-dependent).
EFTime-average energy flux per unit length of wave crest.

↑ Top

F

SymbolMeaning
fGeneric function; Maxwell distribution function; Helmholtz free energy per unit mass; longitudinal correlation coefficient; Coriolis frequency; dimensionless friction parameter (context-dependent).
f (Darcy)Darcy friction factor.
fiUnsteady body-force distribution.
φ (phi)Velocity potential; also an angle (context).
fSurface (traction) force vector per unit area.
FForce magnitude; generic flux/field; profile function.
FfPerimeter friction force.
FForce vector; average wave-energy flux vector.
𝓕Body-force potential; undetermined spectrum function (context).
FDDrag force (instantaneous/average, context).
FLLift force.
FrFroude number.

↑ Top

G

SymbolMeaning
γ (gamma)Ratio of specific heats; velocity gradient; vortex-sheet strength; generic dependent variable.
γ̇ (gamma)Shear rate.
gBody force per unit mass (e.g., gravity).
gAcceleration of gravity; undetermined function; transverse correlation coefficient (context).
g′Reduced gravity.
Γ (Gamma)Circulation.
GaAdiabatic vertical temperature gradient (lapse rate).
Γa (Gamma)Circulation due to absolute vorticity.
GGravitational constant; profile function (context).
GnFourier-series coefficient.
GCenter of mass / center of vorticity (context).

↑ Top

H

SymbolMeaning
hEnthalpy per unit mass; height; gap height; viscous-layer thickness.
Planck’s constant (reduced).
η (eta)Free-surface shape; waveform; similarity variable; Kolmogorov microscale (context).
ηT (eta)Batchelor microscale.
HAtmospheric scale height; water depth; step function; shape factor; profile function (context).

↑ Top

I

SymbolMeaning
IMoment of inertia (context); integral/indicator (context); identity in some texts (else use δij).
IIdentity tensor (sometimes 𝕀); often implied by δij.
I±Characteristic invariants along 𝒞± (1-D compressible waves).

↑ Top

J

SymbolMeaning
JJacobian determinant (coordinate transforms); jet momentum flux (context).
JmDiffusive mass-flux vector (species transport).
JnBessel function (order n)—pipe/duct eigenproblems.

↑ Top

K

SymbolMeaning
kThermal conductivity; wavenumber magnitude (context).
κ (kappa)von Kármán constant (~0.41) in wall turbulence.
KBulk modulus; kinetic energy (context).
KnKnudsen number.

↑ Top

L

SymbolMeaning
Characteristic length / mean free path / mixing length (context).
LLength; lift; Rossby radius; aspect ratio (context).
LMMonin–Obukhov length (stratified BLs).

↑ Top

M

SymbolMeaning
mMass; slope/index (context).
μ (mu)Dynamic viscosity.
μb (mu)Bulk (second) viscosity.
MMach number; mass (context).
MwMolecular weight.

↑ Top

N

SymbolMeaning
nNumber density; unit normal (vector) (context).
NBrunt–Väisälä (buoyancy) frequency.
NuNusselt number.
ν (nu)Kinematic viscosity (also listed under V).

↑ Top

O

SymbolMeaning
OOrigin (in sketches/derivations).
Ω (Omega)Planetary rotation rate / angular velocity of a rotating frame.
ω (omega)Vorticity vector; angular frequency (context).

↑ Top

P

SymbolMeaning
pStatic pressure.
p0Total (stagnation) pressure; or reference pressure at z=0 (context).
patmAtmospheric pressure.
PPower; average/mean pressure (context).
PrPrandtl number.
ψ (psi)Stream function (2-D incompressible; vector Ψ in some contexts).
Π (Pi)Π-groups (dimensionless products) in Buckingham-Π analysis.

↑ Top

Q

SymbolMeaning
QVolumetric flow rate; total heat per unit mass (context).
qDynamic pressure q = ½ ρ U2 (aero); also generic heat flux (context).
q (Batchelor)Speed magnitude |u|.
qiHeat-flux vector components.
qs2-D point source strength.

↑ Top

R

SymbolMeaning
rRadial coordinate / distance from an origin or axis.
ρ (rho)Density.
RGas constant (specific); radius (context).
RuUniversal gas constant.
RiRadius of curvature (streamline geometry).
ReReynolds number.
RaRayleigh number.
RiRichardson number.
RfFlux Richardson number.
RoRossby number.

↑ Top

S

SymbolMeaning
sEntropy; arc length; salinity; wingspan (aero) — context dependent.
s (vector)Relative position / displacement vector.
SArea; salinity; scattered-light intensity (context).
σ (sigma)Surface tension; normal stress (context).
σij (sigma)Cauchy stress tensor components (Batchelor).
eijRate-of-strain tensor (Batchelor notation).
SijStrain-rate (rate-of-strain) tensor.
ScSchmidt number.
ShSherwood number.
StStrouhal number.

↑ Top

T

SymbolMeaning
tTime.
TTemperature.
θ (theta)Potential temperature; generic angle (context).
τ (tau)Shear stress; relaxation time (context).
τijStress tensor components.
tiTraction component: ti = σij nj.
Tw, T0Wall temperature; stagnation (total) temperature.
TaTaylor number.

↑ Top

U

SymbolMeaning
uVelocity component along x (streamwise).
uVelocity vector (u, v, w).
u*Friction velocity √(τw/ρ).
UMean / outer / free-stream speed (context).
Ue, UCL, UNEdge velocity (BL); centerline velocity (pipe/jet); far-upstream velocity.

↑ Top

V

SymbolMeaning
vVelocity component along y (often wall-normal in BL); molecular speed (kinetic theory).
vMolecular velocity vector (kinetic theory); generic vector.
VVolume; material volume; average cross-stream velocity; average velocity magnitude; complex velocity (context).
V*Control volume.
ν (nu)Kinematic viscosity (also listed under N).
vMean/averaged velocity (context).

↑ Top

W

SymbolMeaning
wVertical velocity component; downwash velocity (aero); complex potential W (context).
WThermodynamic work per unit mass; wake function (context).
Rate of energy input from mean flow (turbulence budgets).
WeWeber number.

↑ Top

X

SymbolMeaning
xFirst Cartesian coordinate (streamwise).
xPosition vector.
xiComponents of position vector.
ξ (xi)Similarity variable / coordinate in some transforms (context).

↑ Top

Y

SymbolMeaning
ySecond Cartesian coordinate (wall-normal in BL).
YMass fraction.
YCLCenterline mass fraction (jet mixing problems).
Υ (Upsilon)Used rarely; problem-dependent constant (context).

↑ Top

Z

SymbolMeaning
zThird Cartesian coordinate; complex variable (potential flow).
ζ (zeta)Interface displacement (free surface); relative vorticity (geophysical context).
ZGeopotential height / altitude of a pressure surface (synoptic examples).

↑ Top

Print PDF Large type • soft borders • equations scaled up

Problem 4.56 — Beginner-Friendly Step-by-Step (Print)

0) The Big Picture

2-D steady conduction in a wall with uniform volumetric generation, \( \dot q = 1\times10^{6}\ \mathrm{W/m^3} \). Grid \( \Delta x=\Delta y=\Delta=0.025\ \mathrm{m} \). Thermal conductivity \( k=10\ \mathrm{W/(m\cdot K)} \).

Given nodal temperatures (°C)

NodeTemp
\(T_2\)95.47
\(T_3\)117.3
\(T_5\)79.79
\(T_6\)77.29
\(T_8\)87.28
\(T_{10}\)77.65

Convection boundaries

Inner (Surface B): \(h_i=500,\ T_{\infty,i}=50^{\circ}\mathrm{C}\).
Outer (Surface A): \(h_o=250,\ T_{\infty,o}=25^{\circ}\mathrm{C}\).

Unknowns

\(T_1, T_4, T_7, T_9\), then \(q'_A\), \(q'_B\), and overall balance.

Handy constants

  • \( \dfrac{h_i \Delta}{k}=1.25 \)
  • \( \dfrac{h_o \Delta}{k}=0.625 \)
  • \( \dfrac{\dot q\,\Delta^2}{4k}=15.625 \)
  • \( \dfrac{\dot q\,\Delta^2}{2k}=31.25 \)
Legend for sketches: blue = conduction, green dashed = convection, ⚡ = generation.

Variable Definitions

  • \(T_i\) Temperature at node i (°C)
  • \(k\) Thermal conductivity (W/m·K)
  • \(\Delta\) Grid spacing (m)
  • \(\dot q\) Heat generation rate (W/m³)
  • \(h_i\) Inner convection coeff (W/m²·K)
  • \(h_o\) Outer convection coeff (W/m²·K)
  • \(T_{\infty,i}\) Inner fluid temp (°C)
  • \(T_{\infty,o}\) Outer fluid temp (°C)
  • \(A\) Control-volume face area (m²)
  • \(V\) Control-volume size (m³/unit depth)
  • \(q'_A\) Heat flux leaving surface A (W/m)
  • \(q'_B\) Heat flux entering surface B (W/m)
T7

Quick legend: what all the T’s mean

SymbolMeaning / location
T₁Top-left corner of solid (top & left insulated)
T₂Inner surface B, north of the notch (above T₄)
T₃Interior west of T₄ (also above T₇)
T₄Re-entrant corner (north & east faces convect to inner fluid)
T₅Interior east of T₄ (above T₉)
T₆Inner-surface node on east side (given)
T₇Outer surface A corner at bottom-left (south face convects)
T₈Interior just east of T₇
T₉Bottom edge (between T₈ and T₁₀), south face convects
T₁₀Bottom-edge corner at right end of the bottom strip

T∞,i and T∞,o are the inner/outer fluid temps; hi, ho their convection coefficients.

1) Universal Recipe (works at any node)

\[ \sum_{\text{faces}} k\frac{A}{L_n}(T_{N}-T_P) \;+\; \sum_{\text{conv}} hA\,(T_\infty - T_P) \;+\; \dot q\,V \;=\; 0 \]

  • Interior CV: \(V=\Delta^2\); edge: \(V=\tfrac12\Delta^2\); corner: \(V=\tfrac14\Delta^2\); re-entrant (node 4): \(V=\tfrac34\Delta^2\).
  • Half faces use \(A=\tfrac{\Delta}{2}\); center-to-center gaps are \(\Delta\) (or \(\tfrac{\Delta}{2}\) to a boundary).

2a) Node 1 — Corner (insulated top & left)

T₁ T₂ T₃

East & south conduct to \(T_2\), \(T_3\); west & top insulated (no flux); generation adds \(+\dot q V\).

\[ 0 = k\frac{(\Delta/2)(T_2-T_1)}{\Delta} + k\frac{(\Delta/2)(T_3-T_1)}{\Delta} + \dot q\Big(\tfrac14\Delta^2\Big) \]

\[ \Rightarrow\; T_1 = \frac{T_2+T_3}{2} + \frac{\dot q\,\Delta^2}{4k} \approx \boxed{122.0^\circ\mathrm{C}} \]

2b) Node 4 — Re-entrant corner touching inner fluid (north & east)

T₄ T₅ T₈ T₂ T₃ inner fluid \(h_i\)

\[ T_4=\frac{T_2+2T_3+T_5+2T_8+2\left(\tfrac{h_i\Delta}{k}\right)T_{\infty,i} +\tfrac{3\dot q\,\Delta^2}{2k}} {6+2\left(\tfrac{h_i\Delta}{k}\right)} \approx \boxed{94.50^\circ\mathrm{C}} \]

2c) Node 7 — Outer surface A (corner)

T₇ T₈ T₃ outer fluid \(h_o\)

\[ T_7=\frac{T_3+T_8+\left(\tfrac{h_o\Delta}{k}\right)T_{\infty,o} +\tfrac{\dot q\,\Delta^2}{2k}} {2+\left(\tfrac{h_o\Delta}{k}\right)} \approx \boxed{95.80^\circ\mathrm{C}} \]

2d) Node 9 — Outer bottom edge (not a corner)

T₉ T₈ T₁₀ T₅ outer fluid \(h_o\)

\[ T_9=\frac{T_5+\tfrac12T_8+\tfrac12T_{10} +\left(\tfrac{h_o\Delta}{k}\right)T_{\infty,o} +\tfrac{\dot q\,\Delta^2}{2k}} {2+\left(\tfrac{h_o\Delta}{k}\right)} \approx \boxed{79.67^\circ\mathrm{C}} \]

3) Surface Heat Rates (per unit length)

Outer surface \(A\) (bottom; nodes 7–10)

\[ \begin{aligned} q'_A &= h_o\!\left[\tfrac{\Delta}{2}(T_7 - T_{\infty,o}) + \Delta(T_8 - T_{\infty,o}) + \Delta(T_9 - T_{\infty,o}) + \tfrac{\Delta}{2}(T_{10} - T_{\infty,o})\right] \\ &\approx \boxed{1117\ \mathrm{W/m}} \end{aligned} \]

Inner surface \(B\) (nodes 2, 4, 5, 6)

\[ \begin{aligned} q'_B &= h_i\!\left[\tfrac{\Delta}{2}(T_{\infty,i}-T_2) + \Delta(T_{\infty,i}-T_5) + \tfrac{\Delta}{2}(T_{\infty,i}-T_6) + \Delta(T_{\infty,i}-T_4)\right] \\ &\approx \boxed{-1383\ \mathrm{W/m}} \end{aligned} \]

4) Energy-Balance Check

\[ \dot E'_{\text{in}}-\dot E'_{\text{out}}+\dot E'_{\text{gen}}=0 \quad\Rightarrow\quad -q'_A+q'_B+\dot q\,V' = 0 \]

\[ -1117 - 1383 + 2500 = 0 \quad \Longrightarrow \quad \text{balanced}\ \checkmark \]

Consistent with \(\dot q=10^6\ \mathrm{W/m^3}\) and \(V' = 2.5\times10^{-3}\ \mathrm{m^2}\) for the L-section.

Click “Print PDF” above. The page will typeset math, scroll to the top, then open your print dialog.
Thermal Interview Crash Sheet

Thermal Interview Crash Sheet

Focus: first principles + hand calculations. Two high-yield scenarios: (1) Lumped-capacitance and (2) Transient slab (“thermal block”). Includes Biot & Fourier checks, quick formulas, and interview checklists.

1) Lumped-Capacitance Heating/Cooling

Use when internal temperature gradients are negligible (body ~ isothermal).

Biot Number Check

\[ Bi \equiv \frac{h L_c}{k} < 0.1 \]

Characteristic length (body dependent), e.g. slab \(L_c = \dfrac{V}{A} = \dfrac{t}{2}\), sphere \(L_c=\dfrac{R}{3}\).

Governing Solution (Newton’s Law of Cooling)

\[ T(t) = T_\infty + \bigl(T_i - T_\infty\bigr)\,e^{-t/\tau}, \qquad \tau = \frac{\rho c_p V}{hA} = \frac{\rho c_p L_c}{h} \]

Interview Checklist

  • State assumption: “Check \(Bi<0.1\) for lumped validity.”
  • Compute \(Bi\). If valid → use exponential form; compute time constant \( \tau \).
  • Report \(T(t)\) or dimensionless \( \theta(t) = \dfrac{T-T_\infty}{T_i-T_\infty} = e^{-t/\tau} \).
  • Limits: Large Bi → use transient slab (below).

Quick Numeric Example

Given Al sphere: \(k=205\,\mathrm{W/(m\cdot K)}\), \(\rho c_p=2.43\times10^6\,\mathrm{J/(m^3\cdot K)}\), \(h=20\,\mathrm{W/(m^2\cdot K)}\), \(R=25\,\mathrm{mm}\).

\[ L_c=\frac{R}{3}=0.00833\,\text{m},\quad Bi=\frac{hL_c}{k}\approx 0.0008 \ (\text{lumped valid}) \] \[ \tau=\frac{\rho c_p L_c}{h}\approx \frac{2.43\times10^6(0.00833)}{20}\approx 1.01\times10^3\text{ s} \]

Use \( T(t)=T_\infty+(T_i-T_\infty)e^{-t/\tau} \) as needed.

2) Transient Slab (“Thermal Block”) with Convection

Use when internal gradients matter (larger bodies or higher \(h\)). Treat as a slab of half-thickness \(L\), with convection at surfaces.

Decision Flow

  • Biot: \(Bi = \dfrac{hL}{k}\). If \(Bi<0.1\) → lumped (section 1).
  • Otherwise use 1-term series or Heisler charts (transient slab).
  • Fourier: \(Fo=\dfrac{\alpha t}{L^2}\) with \( \alpha=\dfrac{k}{\rho c_p} \).

1-Term Slab Solution (common interview acceptance)

Find \( \lambda_1 \) from the transcendental: \( \lambda_1 \tan\lambda_1 = Bi \).

\[ \theta(x,t) \approx A_1 \cos\!\left(\frac{\lambda_1 x}{L}\right)\, e^{-\lambda_1^2 Fo},\quad A_1=\frac{4\sin\lambda_1}{2\lambda_1+\sin(2\lambda_1)} \]
  • Centerline \(x=0\): \( \theta(0,t)=A_1 e^{-\lambda_1^2 Fo} \).
  • Surface \(x=L\): \( \theta(L,t)=A_1 \cos\lambda_1 \, e^{-\lambda_1^2 Fo} \).
  • \( \theta \equiv \dfrac{T-T_\infty}{T_i-T_\infty} \).

Heat to/from the Fluid (surface flux)

\[ q''(t) = h\,[T_s(t)-T_\infty] = -k\left.\frac{\partial T}{\partial x}\right|_{x=L} = k\,\frac{\lambda_1}{L}\,A_1 \sin\lambda_1 \, e^{-\lambda_1^2 Fo}\,(T_i-T_\infty) \]

Use this when asked for “heat rate to the fluid” at a face.

Interview Micro-Checklist (slab)

  • Define \(L\) (half-thickness), compute \(Bi\) and \(Fo\).
  • State the governing form (1-term or charts), solve \( \lambda_1 \tan\lambda_1=Bi \) → get \(A_1\).
  • Report \(T\) or \( \theta \) at center/surface; give \( q''(t) \) if asked about heat to the fluid.

Quick Formulas

Biot & Fourier

\[ Bi=\frac{hL_c}{k},\qquad Fo=\frac{\alpha t}{L^2},\qquad \alpha=\frac{k}{\rho c_p} \]

Lumped Time Constant

\[ \tau=\frac{\rho c_p V}{hA}=\frac{\rho c_p L_c}{h},\qquad \theta(t)=e^{-t/\tau} \]\

Energy Balance (fast check)

\[ \dot{E}_{in}-\dot{E}_{out}+\dot{E}_{gen}=0 \]

At steady state: net in – out + generation = 0. Use this as a 10-second sanity check on any fin/box/slab total.