📘 Theory of Elasticity – Complete Notes from Drawings
Built for beginners: every formula shows what each symbol means, when it applies, and how to check your units.
1) Introduction
Theory of Elasticity concerns the deformation of elastic solids under forces. In the elastic range, the body returns to its original shape when the load is removed (no permanent, plastic strain).
Context: Mechanics of Materials (ME110).
2) Fundamental Concepts & Diagrams
Cylinder under tension: an initial length \(L\) is stretched to \(L+\Delta L\). Cross-section and radius may change slightly: \(A\!\to\!A+\Delta A,\; r\!\to\!r+\Delta r\).
3) Stress and Strain
Stress
Engineering strain
Why average stress \(F/A\) is OK here
In uniform axial loading with small deformations, stress is approximately uniform across the cross-section. For high-gradient cases (holes/notches), use elasticity solutions or FEA.
4) Stress–Strain Relationship
Hooke’s law (linear elasticity) :
In the linear (initial straight) region of the stress–strain curve, \(E\) is constant. Beyond yield, plastic strain \(\varepsilon_p\) appears and unloading does not return to zero strain.
5) Focus of Class
This course focuses on the theory of linear elasticity (small strains, linear stress–strain relation, typically isotropic materials).
6) Example – Bar in Tension
6.1 Elongation
From \(\sigma=\tfrac{F}{A}\) and \(\sigma=E\varepsilon=E\,\tfrac{\Delta L}{L}\) :
6.2 Lateral Contraction (Poisson’s Effect)
Interpretation: tiny radius shrinkage relative to the axial elongation.
7) Classical Problems in Mechanics of Materials
(a) Beam under distributed load \(q\)
Simply supported beam, length \(L\), rectangular cross-section \(b\times h\) \(\bigl(I=\tfrac{b h^{3}}{12}\bigr)\). Governing equation (Euler–Bernoulli):
Tasks you’ll see: sketch supports & loads → write boundary conditions → solve for \(w(x)\) → compute moment \(M(x)\) and stresses.
8) General Elasticity Problems
Unknowns: displacement fields \(u_x(x,y)\), \(u_y(x,y)\). The (small) strain tensor is built from displacement gradients.
Geometry may be, e.g., a triangular domain (base \(a\), height \(b\)) under shear; material properties: \(E,\ \nu\).
Constitutive law in 2D (isotropic, linear)
3D form: \(\boldsymbol{\sigma}=2\mu\,\boldsymbol{\varepsilon} + \lambda\,\mathrm{tr}(\boldsymbol{\varepsilon})\,\mathbf I\), with \(\mu=\dfrac{E}{2(1+\nu)}\) and \(\lambda=\dfrac{E\,\nu}{(1+\nu)(1-2\nu)}\). In plane stress/strain, the equivalent 2D matrices are used.
9) Stress Concentration & Fracture
Plate with circular hole under tension
Applied far stress \(\sigma\), hole radius \(R\), outer size \(a\) with \(R\ll a\). The peak hoop stress at the hole edge is
Fracture Mechanics – near a crack tip
As distance to the tip \(r\to 0\), stresses grow like
Key idea: stress intensity factor \(K_I\) captures geometry + load effects near the crack tip.
10) Broader Context of Mechanics
- Engineering Mechanics: Statics & Dynamics (ME010 + ME103).
- Solid Mechanics track: Mechanics of materials → Elasticity → Plasticity → Fracture mechanics.
- Fluid Mechanics: Continuum mechanics of liquids/gases.
Quick symbols & units
Vector Notes — Complete Breakdown
A quick, beginner-friendly path: definitions → components → index rules → dot/cross → δ/ε identities → triple products → a tiny worked example.
1) What is a Vector?
A vector has both magnitude (length) and direction. We draw it as an arrow. Common notations: \(\vec{a}\) (Gibbs) or bold \(\mathbf{a}\).
2) Vectors in Cartesian Coordinates
With orthonormal basis \(\{\vec e_1,\vec e_2,\vec e_3\}\):
3) Index Operations
- Each term: every index is either repeated exactly twice (summed) or appears once (free).
- The same free indices must appear on both sides of an equation.
4) Vector Operations
(a) Addition / Subtraction
Geometric view: triangle/parallelogram law.
(b) Dot Product
5) Kronecker Delta \(\delta_{ij}\)
6) Cross Product
\(\vec c=\vec a\times\vec b\) has magnitude \(c=ab\sin\theta\) and direction given by the right-hand rule; \(\vec c\perp\vec a,\vec b\).
7) Levi-Civita Symbol \(\epsilon_{ijk}\)
8) Epsilon–Delta Relation
9) Vector Triple Product
\(\vec a\cdot(\vec b\times\vec c)\) is the oriented volume of the parallelepiped formed by \(\vec a,\vec b,\vec c\).
Mini Example (numbers you can check)
Let \(\vec a=(1,2,2)\), \(\vec b=(2,-1,1)\).
Bonus: Component extraction & basis changes
- Don’t mix free indices: \(a_i+b_j\) is invalid.
- Use \(\vec e_i\cdot\vec e_j=\delta_{ij}\) and \(\vec e_i\times\vec e_j=\epsilon_{ijk}\vec e_k\) only in orthonormal bases.
- Norm uses a square root: \(\lVert \vec a\rVert=\sqrt{a_i a_i}\).
Matrix Notes — Organized
Beginner roadmap: definitions → vectors-as-matrices → add/sub → transpose & symmetry → multiplication (with shapes!) → inverses (when they exist) → tiny numeric checks.
1) Definition of a Matrix
An \(m\times n\) matrix has \(m\) rows and \(n\) columns:
- Square: \(n\times n\)
- Zero matrix: all entries 0
- Identity \(I_n\): diagonal ones, else 0; \((I_n)_{ij}=\delta_{ij}\)
- Diagonal: only diagonal entries possibly nonzero
2) Vector as a Matrix
A (column) vector is an \(n\times 1\) matrix:
3) Matrix Addition & Subtraction
Same shape required. Entrywise operation:
4) Transpose of a Matrix
Flip rows/columns: \((A^T)_{ij}=a_{ji}\).
If \(A^T=A\) then \(A\) is symmetric.
- \((A^T)^T=A\)
- \((A+B)^T=A^T+B^T\)
- \((AB)^T=B^T A^T\)
- \((\alpha A)^T=\alpha A^T\) for scalar \(\alpha\)
5) Symmetric & Antisymmetric Decomposition
Any square \(A\) can be split as:
First term is symmetric, second term is antisymmetric (skew-symmetric).
6) Matrix Multiplication
Defined when inner dimensions match: if \(A\) is \(m\times n\) and \(B\) is \(n\times p\), then \(C=AB\) is \(m\times p\) with
7) Inverse of a Matrix
Only for square matrices. If \(A^{-1}\) exists (i.e., \(A\) is invertible / nonsingular):
- \(\det(A)\neq 0\)
- Columns (and rows) are linearly independent
- \(\text{rank}(A)=n\) (full rank)
- \((A^T)^{-1}=(A^{-1})^T\)
- \((AB)^{-1}=B^{-1}A^{-1}\)
- \((\alpha A)^{-1}=\alpha^{-1}A^{-1}\) for nonzero scalar \(\alpha\)
Identity & δ-symbol
Common beginner pitfalls
- Trying to add or subtract matrices of different shapes.
- Multiplying with incompatible dimensions (inner sizes must match).
- Assuming \(AB=BA\) — generally false.
- Symmetric/antisymmetric split requires a square matrix.
- Not every square matrix is invertible — check \(\det(A)\neq 0\).
Coordinate Transformation Notes — Organized
Goal: represent the same geometric vector in two orthonormal bases, derive the component change law, build the rotation matrix, and verify orthogonality step-by-step.
1) Position Vector Representation
Let \(\{\vec e_1,\vec e_2,\vec e_3\}\) be the original orthonormal basis. Any vector (e.g., position) can be written as
- \(\vec x\) (the geometric arrow) is invariant.
- The numbers \(x_i\) vs. \(x'_i\) change because the basis vectors change.
2) Transformation Using Dot Products
Start from equality of the two expansions and dot with a new basis vector \(\vec e'_j\):
3) Example: Rotation in the \(x_1\)–\(x_2\) Plane
Rotate the basis by \(\theta\) about \(x_3\) (right-handed). Standard rotation matrix:
4) Worked Example — rotate \((1,1,0)\) by \(\theta=\pi/4\)
Use \(\cos\theta=\sin\theta=\tfrac{\sqrt2}{2}\approx 0.7071\).
- \(\|\vec x\|=\sqrt2=\|\vec x'\|\) (rigid rotation).
- \(\mathbf{x}=\mathbf{A}^T\mathbf{x}'\) reproduces \((1,1,0)\).
5) Orthogonality Condition (rotations preserve dot products)
Rows/columns of \(\mathbf A\) are orthonormal:
Bonus: How to build \(\mathbf{A}\) from basis vectors
Common pitfalls (and fixes)
- Row/column mixups: keep \(x'_j=\alpha_{ji}x_i\) (row = primed index).
- Forgetting orthogonality: check \(\mathbf{A}^T\mathbf{A}=\mathbf{I}\).
- Angle sign: standard \(x_1\!\!-\!x_2\) rotation above is \(+\theta\) about \(x_3\) (RH rule).
- \(\vec x\) “changing”: only components change; the geometric vector is the same.
Tensor Notes — Organized
Conventions (3D unless stated): indices i,j,k,ℓ,m,n,p,q,r,s,t run over {1,2,3}. Repeated indices are summed (Einstein). Bold/arrows = vectors; plain indexed symbols = components.
Index & Symbol Legend (read me first)
- Repeated indices (e.g., \(a_i b_i\)) are summed and vanish from the result.
- Free indices (e.g., \(c_j=\alpha_{ji} a_i\)) must appear on both sides with the same letters.
- Use any index at most twice per term (we keep all as subscripts here).
1) Tensor Definition (by transformation law)
A quantity is a tensor if its components transform with the basis by the appropriate product of \( \alpha \)’s.
First-order (vector)
Second-order
Third-order
Matrix view: \(a_{ij}\!\leftrightarrow\!\mathbf A\) with \( \mathbf A'=\mathbf R\,\mathbf A\,\mathbf R^{\!T} \), \( \mathbf R=[\alpha_{ij}] \).
2) Example — Dyadic (outer) Product
Given vectors \(a_i\) and \(b_j\), define the dyad (a 2nd-order tensor)
Matrix form (rows \(i\), columns \(j\)):
Proof that \(t_{ij}\) is a tensor
- \(t_{ij} b_j = (b_k b_k)\, a_i\) (vector). Free index \(i\) remains.
- \(a_i t_{ij} = (a_k a_k)\, b_j\) (vector). Free index \(j\) remains.
- \(t_{ii} = a_i b_i = \vec a\cdot \vec b\) (scalar trace).
3) Isotropic Tensors (unchanged by any rotation)
\(t'_{ij}=t_{ij}\) for all orthogonal \(\alpha\) ⇒ components are the same in every orthonormal basis.
- 2nd order: \(\delta_{ij}\) (identity). Check: \(\delta'_{ij}=\alpha_{i m}\alpha_{j n}\delta_{mn}=\alpha_{i m}\alpha_{j m}=\delta_{ij}\).
- 3rd order: \(\epsilon_{ijk}\) (permutation). Using \(\det(\alpha)=\pm 1\): \(\epsilon'_{ijk}=\det(\alpha)\,\epsilon_{ijk}\), unchanged for proper rotations (\(+1\)).
4) Fourth-Order Isotropic Tensor
General isotropic form (common in linear elasticity):
Constants \(\lambda,\mu,\kappa\) are material parameters. In classical elasticity for symmetric stresses/strains, the antisymmetric part vanishes (\(\kappa=0\)); we use the Lamé constants \(\lambda,\mu\) (\(\mu\) is the shear modulus \(G\)).
- \(\delta_{ij}\delta_{kl}\): couples traces (volumetric part).
- \(\delta_{ik}\delta_{j\ell}+\delta_{i\ell}\delta_{jk}\): symmetric identity on 2nd-order tensors.
- \(\delta_{ik}\delta_{j\ell}-\delta_{i\ell}\delta_{jk}\): antisymmetric part (drops for symmetric fields).
5) How Tensors Act — Contractions & Shapes
Operation | Index form | Shape / comment |
---|---|---|
2nd-order on vector | \( c_i = a_{ij} b_j \) | \(\mathbf A\vec b\): \(3\times3\) with \(3\times1 \to 3\times1\) |
Vector on 2nd-order | \( d_j = b_i a_{ij} \) | row \(\vec b^{\!\top}\mathbf A\): \(1\times3\) with \(3\times3 \to 1\times3\) |
Double contraction | \( a_{ij} b_{ij} = \mathbf A\!:\!\mathbf B \) | scalar; also \(a_{ii}=\mathrm{tr}(\mathbf A)\) |
4th-order on 2nd-order | \( c_{ij}=S_{ijkl}\,a_{kl} \) | stiffness/identity-type on \(\mathbf A\); free \(i,j\) preserved |
6) Physical Examples (names + indices)
- Displacement gradient: \(u_{i,j}=\partial u_i/\partial x_j\) (2nd-order, not necessarily symmetric).
- Small strain: \(\varepsilon_{ij}=\tfrac12(u_{i,j}+u_{j,i})\) (symmetric).
- Stress: \(\sigma_{ij}\) (symmetric for no body couples).
- Hooke (isotropic): \(\sigma_{ij}=\lambda\,\varepsilon_{kk}\,\delta_{ij}+2\mu\,\varepsilon_{ij}\).
Here \(\varepsilon_{kk}=\mathrm{tr}(\boldsymbol\varepsilon)\) and \(G=\mu\), \(E=\mu\,\frac{3\lambda+2\mu}{\lambda+\mu}\), \(\nu=\frac{\lambda}{2(\lambda+\mu)}\).
7) Tiny Numeric Sanity (2D slice)
Setup: let \(\vec a=(2,1,0)\), \(\vec b=(1,-1,0)\). Then \(t_{ij} = a_i b_j\):
Now multiply by \(\vec b\):
Matches the contraction rule: \(t_{ij} b_j = (b_k b_k)\,a_i\).
Quick Crib (who’s who in a formula?)
- \( a'_i = \alpha_{ij} a_j \) free: \(i\); summed: \(j\). (Vector change of basis.)
- \( a'_{ij} = \alpha_{im}\alpha_{jn} a_{mn} \) free: \(i,j\); summed: \(m,n\). (Matrix change of basis.)
- \( c_i = a_{ij} b_j \) free: \(i\); summed: \(j\). (Matrix–vector product.)
- \( s = a_{ij} b_{ij} \) all summed. (Scalar double contraction.)
- \( c_{ij} = S_{ij k\ell}\, a_{k\ell} \) free: \(i,j\); summed: \(k,\ell\). (4th on 2nd order.)
How \( \epsilon_{ijk} \) & \( \delta_{ij} \) Power Linear Elasticity
This section connects Levi–Civita \( \epsilon_{ijk} \) and Kronecker delta \( \delta_{ij} \) directly to kinematics, constitutive laws, vector identities, and the Navier–Cauchy equations.
Variable & Index Legend
Kinematics: Splitting the Displacement Gradient
Start with the gradient of displacement, \(L_{ij}:=u_{i,j}\). Split it into symmetric (strain) and antisymmetric (rotation) parts:
The Antisymmetric Part Encoded with \( \epsilon_{ijk} \)
The curl and the rotation tensor are tied together by \( \epsilon_{ijk} \):
- Define \( \omega_k := \epsilon_{kij}\,u_{j,i} \) (equals \( (\mathrm{curl}\,u)_k \)).
- \( \tfrac12 \epsilon_{ijk}\,\omega_k = \tfrac12 \epsilon_{ijk}\epsilon_{k\ell m} u_{m,\ell} \).
- Use \( \epsilon_{ijk}\epsilon_{k\ell m}=\delta_{i\ell}\delta_{j m}-\delta_{i m}\delta_{j\ell} \).
- Get \( \tfrac12(u_{j,i}-u_{i,j}) = -W_{ji}=W_{ij} \) since \(W\) is antisymmetric.
Isotropic Elasticity Tensor (Hooke’s Law)
Rotational invariance + minor symmetries \( C_{ijkl}=C_{jikl}=C_{ijlk} \) restrict the 4th-order stiffness \(C\) to the form:
Hooke’s law for small-strain isotropic elasticity is then
- Volumetric (hydrostatic): \( \lambda\,\varepsilon_{kk}\,\delta_{ij}\) depends only on the trace \( \varepsilon_{kk} \) (dilation).
- Deviatoric (shear): \( 2\mu\,\varepsilon_{ij}\) controls shape change at fixed volume.
Useful \( \epsilon\)–\( \delta \) Contractions (Keep These Handy)
Rotation Vectors & Moments Use \( \epsilon_{ijk} \)
Moments of a force \( \mathbf F \) about position \( \mathbf x \) are encoded via Levi–Civita:
Same symbol appears in angular momentum, torque, vorticity, and many skew-symmetric constructions.
Common Pitfalls (and quick fixes)
- Index mismatch: Free indices must match on both sides; each dummy index appears exactly twice per term.
- Sign errors with \( \epsilon_{ijk} \): Swap two indices → change sign. Check permutations against \(123\).
- Forgetting symmetry: In small-strain isotropic elasticity, \(\sigma_{ij}=\sigma_{ji}\) and \(\varepsilon_{ij}=\varepsilon_{ji}\).
- Using wrong identity: Keep \( \epsilon_{ijk}\epsilon_{mnk}=\delta_{im}\delta_{jn}-\delta_{in}\delta_{jm} \) handy; it drives most reductions.
General → Isotropic Hooke, Strain–Displacement, & Navier–Cauchy
General linear elasticity → isotropic reduction → Hooke’s law in \((\lambda,\mu)\) → strain from displacement → equilibrium → Navier–Cauchy PDE.
1) Hooke’s Law (General Linear Elasticity)
The most general linear relation between stress and strain is
Einstein summation: any index repeated exactly twice is summed over \(1,2,3\).
2) Specializing to an Isotropic Solid
Isotropy forces \(C\) to combine Kronecker deltas:
3) Hooke’s Law in Isotropic Form
Using \(\varepsilon_{kk}=\nabla\!\cdot u\):
4) Strain from Displacement
6) Variable Glossary
From 1D Bar Law → Full 3D Hooke’s Law
Start simple, add Poisson coupling, then arrive at the compact tensor form.
1) The “Simple” 1D Hooke’s Law
2) Including Lateral Contraction (Poisson)
3) 3D Generalization (Isotropic Tensor Form)
4) Why It Feels Different
Intro courses show \(\sigma=E\varepsilon\). Elasticity needs indices + Lamé constants to handle combined normal/shear states and equilibrium in 3D.
1D Hooke’s Law → 3D with Poisson & Shear
Both “strain from stress” and “stress from strain,” plus shear with \(G\).
1) 1D Hooke (recap)
2) 3D (strain from stress)
3) 3D (stress from strain)
4) Variable Glossary
Symbol | Meaning |
---|---|
\(E\) | Young’s modulus. |
\(\nu\) | Poisson’s ratio. |
\(G=\dfrac{E}{2(1+\nu)}\) | Shear modulus. |
\(\sigma_i\) | Normal stresses. |
\(\tau_{ij}\) | Shear stresses. |
\(\varepsilon_i\) | Normal strains. |
\(\gamma_{ij}\) | Engineering shear strains. |
Hooke’s Law: 1D vs 3D (Isotropic Linear Elasticity)
Side-by-side comparison using the same symbols as above.
Concept | 1D Bar | 3D Isotropic Solid |
---|---|---|
Stress–Strain Law | \[\sigma=E\,\varepsilon\] |
\[\sigma_{ij}=\lambda\,\varepsilon_{kk}\,\delta_{ij}+2\mu\,\varepsilon_{ij}\]
Normal components (using \(E,\nu\)):
\[
\sigma_x=\frac{E}{(1+\nu)(1-2\nu)}\big[(1-\nu)\varepsilon_x+\nu(\varepsilon_y+\varepsilon_z)\big],
\]
and cyclic permutations.
|
Axial strain | \[\varepsilon=\frac{\Delta L}{L}\] | \[\varepsilon_x=\frac{1}{E}\big(\sigma_x-\nu(\sigma_y+\sigma_z)\big)\] |
Stress definition | \[\sigma=\frac{F}{A}\] | \(\sigma_{ij}\): Cauchy stress tensor. |
Strain definition | \[\varepsilon=\frac{\Delta L}{L}\] | \[\varepsilon_{ij}=\tfrac12(u_{i,j}+u_{j,i})\] |
Poisson effect | \[\varepsilon_{\perp}=-\nu\,\varepsilon\] | Built-in via coupling among directions. |
Shear | Not in 1D | \[\gamma_{ij}=\tau_{ij}/G,\; G=E/2(1+\nu)\] |
Material constants | \(E\) | \(E,\nu,G,\lambda,\mu\) |
Key Takeaways
- 1D: \( \sigma=E\varepsilon \).
- 3D: \( \sigma_{ij}=\lambda\varepsilon_{kk}\delta_{ij}+2\mu\varepsilon_{ij} \) with Poisson + shear.
Calculus of Vector & Tensor Fields
Scalar fields → \(d\vec s\) → gradient & directional derivative → divergence theorem.
1) Scalar Field
2) Infinitesimal Vector Element
3) Gradient & Directional Derivative
4) Divergence Theorem
📖 Variable Glossary
Symbol | Meaning |
---|---|
\(x_i\) | Cartesian coordinates (\(i=1,2,3\)). |
\(\vec e_i\) | Orthonormal basis vectors. |
\(f(x_i)\) | Scalar field. |
\(d\vec s, ds\) | Infinitesimal displacement vector & magnitude. |
\(\hat n\) | Unit tangent/normal along the path. |
\(\nabla f\) | Gradient of \(f\). |
\(\vec v=v_i\vec e_i\) | Vector field. |
\(\nabla\!\cdot\vec v=\partial v_i/\partial x_i\) | Divergence. |
\(n_i, V, S\) | Surface normal components, volume, boundary surface. |
Deformation in Continuum Mechanics – Explanation
1. Viewpoint of Continuum Mechanics
- Assumption 1: Materials are continuously divisible → no atomic/grain reference.
- Assumption 2: Properties are defined at a mathematical point.
This enables use of calculus and field equations to describe materials.
2. Rigid vs. Deformable
If distance \(d\) between two points is constant → body is rigid.
In reality, all materials are deformable → distances change under loading.
3. Displacement Definition
Material point with reference coordinates:
In general (fields defined on the reference coordinates \(x_m\)):
Displacement depends on original position \(x_m\).
4. Admissible Deformation
Integral transformation under coordinate change:
Jacobian determinant:
- \(J > 0\): admissible (no overlap).
- \(J = 1\): volume preserved.
- \(J \neq 1\): compression or expansion.
5. Example: Simple Shear Deformation
Mapping:
Jacobian matrix and determinant:
Admissibility: \(J>0 \Rightarrow -1<\alpha<1\).
6. Worked Example
Take \(\alpha=\tfrac{1}{2}\):
So point \((1,1)\) maps to \((1.5,1.5)\).
Continuity is preserved because \(J>0\).
📖 Variable Glossary
Symbol | Meaning |
---|---|
\(x_i\) | Reference (undeformed) coordinates of a material point. |
\(x_i'\) | Deformed (current) coordinates after loading. |
\(u_i = x_i'-x_i\) | Displacement vector components. |
\(d\) | Distance between two material points. |
\(f(x,y,z)\) | Scalar field defined on the domain. |
\(dV,\; dV'\) | Volume element in undeformed / deformed configuration. |
\(J=\det\!\big(\partial x_i'/\partial x_j\big)\) | Jacobian determinant (volume scaling). |
\(\alpha\) | Shear parameter (controls deformation intensity). |
Key Takeaways
- Jacobian \(J\) links undeformed to deformed volumes.
- Displacement \(u_i\) tracks motion of material points.
- Admissibility requires \(J>0\).
- Shear mapping example shows geometric limits \((-1<\alpha<1)\).
From Deformation Mapping → Small Strain (and Finite Strain)
We go from the kinematic map \(x' = x + u(x)\) to the small (engineering) strain \( \varepsilon = \tfrac12(\nabla u + \nabla u^{T}) \), show the finite-strain alternative via Green–Lagrange \( \mathbf E \), and evaluate both for the symmetric shear example.
1) Kinematics
Mapping (current coordinates as functions of reference coordinates):
Deformation gradient and displacement gradient:
2) Small (Engineering) Strain
For small deformations/rotations \( \|\nabla u\| \ll 1 \):
Volumetric strain (dilatation) and rotation (skew) split:
Jacobian (volume change) to first order:
3) Finite-Strain Alternative (no smallness assumption)
Right Cauchy–Green tensor and Green–Lagrange strain:
If quadratic terms are negligible, \( \mathbf E \to \boldsymbol\varepsilon \).
4) Plug-in Your Mapping (Symmetric Shear)
Mapping:
Displacement and gradients:
Small-strain tensor
Infinitesimally incompressible (\( \varepsilon_v=0 \)) and no rigid rotation to first order.
Finite (Green–Lagrange) strain
With \( \nabla u = \begin{bmatrix} 0 & \alpha & 0\\ \alpha & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}\), we have \( (\nabla u)^T\nabla u = \begin{bmatrix} \alpha^2 & 0 & 0\\ 0 & \alpha^2 & 0\\ 0 & 0 & 0 \end{bmatrix}\).
Finite shear produces normal strains \(E_{11}=E_{22}=\alpha^2/2\). Dropping \(O(\alpha^2)\) terms recovers the small-strain result.
Jacobian for this mapping: \( \mathbf F = \begin{bmatrix} 1 & \alpha & 0\\ \alpha & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \Rightarrow J=\det\mathbf F=1-\alpha^2 \approx 1 \) for small \(|\alpha|\).
5) Quick Checklist
- \(\mathbf F = \mathbf I + \nabla u\).
- \(\boldsymbol\varepsilon = \tfrac12(\nabla u + \nabla u^{T})\) (small strain).
- \(\boldsymbol\omega = \tfrac12(\nabla u - \nabla u^{T})\) (rotation).
- \(J \approx 1 + \mathrm{tr}\,\boldsymbol\varepsilon\) (to first order).
- Symmetric shear: \(\varepsilon_{12}=\alpha\), \(\varepsilon_v=0\), \(J\approx 1\).
📖 Variable Glossary
Symbol | Meaning |
---|---|
\(x_i\) | Reference (undeformed) coordinates. |
\(x_i'\) | Current (deformed) coordinates. |
\(u_i = x_i'-x_i\) | Displacement components. |
\(u_{i,j}=\partial u_i/\partial x_j\) | Displacement gradient components. |
\(\nabla u\) | Displacement gradient tensor \([\;u_{i,j}\;]\). |
\(\mathbf F=\partial x'/\partial x=\mathbf I+\nabla u\) | Deformation gradient. |
\(F_{ij}=\delta_{ij}+u_{i,j}\) | Components of \(\mathbf F\). |
\(\delta_{ij}\) | Kronecker delta (identity components). |
\(\boldsymbol\varepsilon\) | Small (engineering) strain tensor, \(\varepsilon_{ij}=\tfrac12(u_{i,j}+u_{j,i})\). |
\(\varepsilon_v=\mathrm{tr}\,\boldsymbol\varepsilon\) | Volumetric strain (dilatation). |
\(\boldsymbol\omega\) | Infinitesimal rotation tensor, \(\omega_{ij}=\tfrac12(u_{i,j}-u_{j,i})\). |
\(J=\det\mathbf F\) | Jacobian determinant (volume change factor). |
\(\mathbf C=\mathbf F^T\mathbf F\) | Right Cauchy–Green tensor. |
\(\mathbf E=\tfrac12(\mathbf C-\mathbf I)\) | Green–Lagrange strain tensor. |
\(\alpha\) | Shear parameter in the symmetric shear mapping. |
\(\gamma_{ij}=2\varepsilon_{ij}\) | Engineering shear strain. |
\(\mathrm{tr}(\cdot)\) | Trace operator (sum of diagonal entries). |
\((\cdot)^T\) | Transpose of a tensor/matrix. |
Displacement Gradient → Strain & Rotation → Finite Strains
We build from the displacement field \(u_i(x)\) to its gradient \(\nabla u\), split it into strain (symmetric) and rotation (antisymmetric), derive strain from line-element changes, and then present finite (geometric) strain measures.
1) Displacement Gradient
Think of the gradient operator acting on each component of the displacement vector:
Here \(L_{ij}\) are the components of the (second-order) displacement-gradient tensor \(\nabla \mathbf u\).
2) Decomposition into Strain and Rotation
Any second-order tensor splits uniquely into symmetric + antisymmetric parts:
In components (matrices):
Interpretation: \(\mathbf D\) measures shape/volume change (strain); \(\mathbf W\) encodes rigid-body rotation (no strain energy in linear theory).
Examples: \(u_{1,1}=\varepsilon_{11}\) (normal strain along \(x_1\)); \(\varepsilon_{12}=\tfrac12(u_{2,1}+u_{1,2})\) (engineering shear/2); \(\omega_3=\tfrac12(u_{2,1}-u_{1,2})\) (small rotation about \(x_3\)).
3) Strain from Line-Element Differences
Let \((ds)^2=dx_i\,dx_i\) be the squared length in the reference configuration and \((ds')^2=dx_i' dx_i'\) in the deformed configuration with \(x_i'=x_i+u_i\).
This motivates the geometric strain tensor (exact, no linearization):
Neglecting quadratic terms \(u_{k,i}u_{k,j}\) yields the familiar small (engineering) strain \(\varepsilon_{ij}=\tfrac12(u_{i,j}+u_{j,i})\).
4) Finite Strain Measures (Beyond Small-Strain)
Introduce the deformation gradient \(\mathbf F = \partial x'/\partial x = \mathbf I + \nabla u\).
Green–Saint-Venant (reference-based)
\(\mathbf E\) measures strain relative to the reference configuration; reduces to \(\mathbf D\) when \(\|\nabla u\|\ll1\).
Euler–Almansi (current-based)
\(\mathbf e\) measures strain relative to the current configuration. For small strains \(\mathbf e\approx \mathbf D\).
Equivalence to line-element result: \(\varepsilon^{\text{geom}}_{ij}=\tfrac12(u_{j,i}+u_{i,j}+u_{k,i}u_{k,j})\) is exactly Green–Saint-Venant \(\mathbf E\) in components with \(F_{ij}=\delta_{ij}+u_{i,j}\).
5) Quick Checklist
- \(\nabla \mathbf u = \mathbf D+\mathbf W\) with \( \mathbf D=\tfrac12(\nabla u + \nabla u^T)\), \( \mathbf W=\tfrac12(\nabla u - \nabla u^T)\).
- Small (engineering) strain: \(\boldsymbol\varepsilon=\mathbf D\).
- Line element: \( (ds')^2-(ds)^2 = 2\,\varepsilon_{ij}^{\text{geom}}\,dx_i dx_j\).
- Finite strains: \( \mathbf E=\tfrac12(\mathbf F^T\mathbf F-\mathbf I)\), \( \mathbf e=\tfrac12(\mathbf I-\mathbf b^{-1})\).
- For \(\|\nabla u\|\ll1\): \( \mathbf E \approx \mathbf e \approx \mathbf D \).
📖 Variable Glossary
Symbol | Meaning |
---|---|
\(x_i,\,x_i'\) | Reference and current (deformed) Cartesian coordinates of a material point. |
\(\vec e_i\) | Orthonormal basis unit vectors along \(x_i\). |
\(u_i(x)\) | Displacement components; \(\mathbf u = u_i \vec e_i\). |
\(u_{i,j}=\partial u_i/\partial x_j\) | Displacement-gradient components. |
\(\nabla \mathbf u=[u_{i,j}]\) | Displacement-gradient tensor (second order). |
\(L_{ij}\) | Alternate notation for \(u_{j,i}\) (used in some texts). |
\(\mathbf D\) | Symmetric part of \(\nabla u\); small (engineering) strain tensor when linearized. |
\(\mathbf W\) | Antisymmetric part of \(\nabla u\); infinitesimal rotation tensor. |
\(\varepsilon_{ij}\) | Small (engineering) strain: \(\tfrac12(u_{i,j}+u_{j,i})\). |
\(\omega_{ij}\) | Infinitesimal rotation: \(\tfrac12(u_{i,j}-u_{j,i})\). |
\(\mathbf F=\partial x'/\partial x=\mathbf I+\nabla u\) | Deformation-gradient tensor. |
\(\mathbf C=\mathbf F^T\mathbf F\) | Right Cauchy–Green tensor (reference measure). |
\(\mathbf b=\mathbf F\,\mathbf F^T\) | Left Cauchy–Green tensor (current measure). |
\(\mathbf E=\tfrac12(\mathbf C-\mathbf I)\) | Green–Saint-Venant finite strain tensor. |
\(\mathbf e=\tfrac12(\mathbf I-\mathbf b^{-1})\) | Euler–Almansi finite strain tensor. |
\(\delta_{ij}\) | Kronecker delta (identity tensor components). |
\((\cdot)^T\) | Transpose operator; \(\mathrm{tr}(\cdot)\): trace (sum of diagonal entries). |
\(\|\nabla u\|\) | Norm of displacement gradient; “\(\ll1\)” means “much less than one.” |
Engineering Stress, Cauchy Stress Tensor & Traction (with FCC example)
1) Engineering Stress
Average (engineering) normal stress on a cross-section of area \(A\) carrying force \(F\):
Local (true) stress components are limits as the patch shrinks to a point:
Same units as pressure (Pa = N/m\(^2\)).
2) Cauchy Stress Tensor
At a point, stress is a second-order tensor \(\boldsymbol\sigma=[\sigma_{ij}]\):
Index \(i\): component (direction) of force. Index \(j\): normal direction of the plane on which that force acts.
3) Stress Vectors on Coordinate Planes
Stress vector on the plane normal to \(\vec e_1,\vec e_2,\vec e_3\):
Because \(\boldsymbol\sigma\) is symmetric, there are 6 independent components.
4) Traction Vector (Cauchy’s Formula)
The traction (stress) vector on a plane with unit normal \(\vec n\) is linear in \(\vec n\):
From equilibrium on an infinitesimal tetrahedron: summing face forces and using \(n_j=A_j/A\) yields \(T_i=\sigma_{ij}n_j\).
5) Application: Resolved Shear Stress in an FCC Crystal
Loading: Uniaxial tension along \([001]\) (the \(x_3\) axis). The Cauchy stress is
Slip system: \(\{111\}\langle 110\rangle\). Take plane normal and slip direction as
Both \(\vec n\) and \(\vec m\) are unit vectors (required for Schmid’s law). Note \(n_3=1/\sqrt{3}\), \(m_3=1/\sqrt{2}\).
Resolved shear on the slip direction
Traction on the slip plane: \(\vec T=\boldsymbol\sigma\,\vec n\). Resolved shear on \(\vec m\):
Normal stress on the slip plane
If you (incorrectly) use non-unit \(\vec n=(1/3)(1,1,1)\), \(\vec m=(1/2)(-1,0,1)\), you’d get \(\tau=\sigma/6\). The unit-vector form above (\(\tau=\sigma/\sqrt{6}\)) is the correct Schmid resolved shear.
📖 Variable Glossary
Symbol | Meaning |
---|---|
\(F\) | Resultant force on a cross-section (N). |
\(A\) | Cross-sectional area (m\(^2\)). |
\(F_n, F_t\) | Normal and tangential components of force on an infinitesimal patch. |
\(\sigma\) | Scalar normal (engineering) stress, \(F/A\) (Pa). |
\(\tau\) | Scalar shear (engineering) stress (Pa). |
\(\boldsymbol\sigma=[\sigma_{ij}]\) | Cauchy stress tensor at a point (Pa). |
\(\sigma_{ij}\) | \(i\)-component of traction acting on the plane whose outward normal is along \(j\). |
\(\vec e_i\) | Orthonormal basis unit vectors along \(x_i\). |
\(\vec n=(n_1,n_2,n_3)\) | Unit normal to a plane (for traction); satisfies \(n_i n_i=1\). |
\(\vec T\) | Traction vector on plane with normal \(\vec n\): \(\vec T=\boldsymbol\sigma\,\vec n\). |
\(T_i=\sigma_{ij}n_j\) | Component form of Cauchy’s traction relation. |
[001] | Crystallographic direction along the cube \(z\)-axis. |
\(\{111\}\langle110\rangle\) | FCC slip systems: planes of type (111) with directions of type \(\langle110\rangle\). |
\(\vec n=\tfrac{1}{\sqrt{3}}(1,1,1)\) | Unit normal to the (111) plane. |
\(\vec m=\tfrac{1}{\sqrt{2}}(-1,0,1)\) | Unit slip direction in \(\langle110\rangle\) family. |
\(\tau=\vec T\cdot \vec m\) | Resolved shear stress (Schmid stress) on the slip direction. |
\(p=\vec n\cdot \boldsymbol\sigma\,\vec n\) | Normal stress acting on the slip plane. |
Mean & Deviatoric Stress, Plane-Stress Transformations, and Mohr’s Circle
1) Mean (Hydrostatic) and Deviatoric Stress
Cauchy stress (symmetric):
Mean (hydrostatic) stress and deviatoric stress:
Hydrostatic part changes volume (pressure); deviatoric part changes shape (distortion).
2) Plane Stress Setup
Plane stress (thin plate, in-plane loading):
Rotate axes in the \(x\!-\!y\) plane by angle \(\theta\) about \(x_3\) to get \((x',y')\).
3) Stress Transformation (Derivation)
Rotation (direction cosines) and tensor transformation:
Carry out multiplication for plane stress; using \(\cos2\theta=\cos^2\theta-\sin^2\theta\) and \(\sin2\theta=2\sin\theta\cos\theta\), we obtain the Mohr form:
Special case (start in principal axes: \((\sigma_x,\sigma_y,\tau_{xy})=(\sigma_1,\sigma_2,0)\)):
4) Mohr’s Circle (Interpretation)
Build the circle from in-plane components \((\sigma_x,\sigma_y,\tau_{xy})\):
Link to mean/deviatoric: circle center \(C\) is the in-plane mean; radius \(R\) reflects the in-plane deviatoric part. In 3D, the full mean is \(\sigma_m=\tfrac13\mathrm{tr}(\boldsymbol\sigma)\), and deviatoric \( \mathbf s=\boldsymbol\sigma-\sigma_m\mathbf I\) governs distortion.
Variable Glossary
Symbol | Meaning |
---|---|
\(\boldsymbol\sigma=\{\sigma_{ij}\}\) | Cauchy stress tensor (Pa); symmetric (\(\sigma_{ij}=\sigma_{ji}\)). |
\(\sigma_{ii}\) | Normal stresses along axes; \(\sigma_{12}=\sigma_{21}=\tau_{xy}\) etc. are shear stresses. |
\(\sigma_1,\sigma_2,\sigma_3\) | Principal stresses (eigenvalues of \(\boldsymbol\sigma\)). |
\(\sigma_m\) | Mean (hydrostatic) stress \(=\tfrac13(\sigma_{11}+\sigma_{22}+\sigma_{33})\). |
\(s_{ij}\) | Deviatoric stress \(=\sigma_{ij}-\sigma_m\delta_{ij}\); zero trace. |
\(\delta_{ij}\) | Kronecker delta (identity tensor components). |
\(\sigma_x,\sigma_y,\tau_{xy}\) | In-plane stress components in the \(x\!-\!y\) frame. |
\(\theta\) | Rotation angle of axes in the plane (positive CCW). |
\(\boldsymbol\alpha\) | Rotation (direction-cosine) matrix. |
\(\boldsymbol\sigma'\) | Stress tensor in the rotated frame; \(\sigma'_{ij}=\alpha_{im}\alpha_{jn}\sigma_{mn}\). |
\(\sigma_{11}',\sigma_{22}',\tau_{x'y'}'\) | In-plane stresses after rotation by \(\theta\). |
\(C\) | Mohr circle center \(=(\tfrac{\sigma_x+\sigma_y}{2},\,0)\) (in-plane mean stress). |
\(R\) | Mohr circle radius \(=\sqrt{((\sigma_x-\sigma_y)/2)^2+\tau_{xy}^2}\). |
\((\sigma_n,\tau_n)\) | Normal/shear on a plane at angle \(\theta\); mapped by \(2\theta\) on the circle. |
\(\sigma_{1,2}=C\pm R\) | In-plane principal stresses; occur where \(\tau_n=0\). |
\(\tau_{\max}=R\) | Maximum in-plane shear; \(90^\circ\) from principal points on Mohr’s circle. |
\(\mathrm{tr}(\cdot),\ \mathbf I\) | Trace; identity tensor. |
Principal Stresses as an Eigenvalue Problem (with invariants & worked example)
Page 1 – Principal Stress as Eigenvalue Problem
Start from Cauchy’s traction relation on a plane with unit normal \( \vec n \):
Seek planes where traction is parallel to the normal (no shear on that plane):
Rearrange to the homogeneous linear system
which component-wise is
Non-trivial solutions exist iff the characteristic determinant vanishes:
This yields a cubic (the characteristic polynomial):
Stress invariants (frame-invariant combinations):
Page 2 – Principal Stresses, Directions & Orthogonality
The three roots of the characteristic cubic are the principal stresses:
For each \(\lambda_k\), the associated unit normal \(\vec n^{(k)}\) (principal direction) satisfies
With a symmetric stress tensor (\(\sigma_{ij}=\sigma_{ji}\)), the principal directions are mutually orthogonal:
Take \(\sigma_{ji}n^{(1)}_j=\lambda_1 n^{(1)}_i\) and \(\sigma_{ji}n^{(2)}_j=\lambda_2 n^{(2)}_i\). Multiply the first by \(n^{(2)}_i\) and the second by \(n^{(1)}_i\), subtract, and use symmetry \(\sigma_{ij}=\sigma_{ji}\) to obtain \((\lambda_1-\lambda_2)\,n^{(1)}_i n^{(2)}_i=0\). If \(\lambda_1\neq\lambda_2\) then \(n^{(1)}_i n^{(2)}_i=0\).
Page 3 – Worked Example (find principal stresses & directions)
Given the (symmetric) stress tensor
Characteristic equation (expand \(\det(\boldsymbol\sigma-\lambda\mathbf I)=0\)):
Principal stresses (eigenvalues):
Find corresponding unit eigenvectors \(\vec n^{(k)}\) (principal directions):
-
For \(\lambda_1=-2\): solve \((\boldsymbol\sigma+2\mathbf I)\vec n^{(1)}=\vec 0\).
One solution is proportional to \((0,1,1)\), normalize to get
\[ \vec n^{(1)}=\big(0,\ \tfrac{\sqrt2}{2},\ \tfrac{\sqrt2}{2}\big). \]
-
For \(\lambda_2=1\): solve \((\boldsymbol\sigma-\mathbf I)\vec n^{(2)}=\vec 0\).
One solution is proportional to \((1,-1,-1)\), normalize to
\[ \vec n^{(2)}=\big(\tfrac{\sqrt3}{3},\ -\tfrac{\sqrt3}{3},\ -\tfrac{\sqrt3}{3}\big). \]
-
For \(\lambda_3=4\): solve \((\boldsymbol\sigma-4\mathbf I)\vec n^{(3)}=\vec 0\).
One solution is proportional to \((-2,1,1)\), normalize to
\[ \vec n^{(3)}=\big(-\tfrac{\sqrt6}{3},\ \tfrac{\sqrt6}{6},\ \tfrac{\sqrt6}{6}\big). \]
Verify orthogonality: \( \vec n^{(i)}\cdot \vec n^{(j)}=0\) for \(i\neq j\), and unit length \( \|\vec n^{(k)}\|=1\).
Page 4 – Transformation & Diagonalization (principal basis)
Form the orthogonal matrix whose columns are the principal directions:
Transform the stress tensor to the principal frame:
Diagonal entries are exactly the principal stresses; shear terms vanish in the principal frame.
Summary
- Principal stresses solve \(\det(\boldsymbol\sigma-\lambda\mathbf I)=0\): \(\lambda^3-I\lambda^2+II\lambda-III=0\).
- Eigenvectors (principal directions) satisfy \(\sigma_{ji}n^{(k)}_j=\lambda_k n^{(k)}_i\); they are orthonormal.
- Rotate into the principal basis to diagonalize \(\boldsymbol\sigma\): \(\boldsymbol\sigma'=\text{diag}(\lambda_1,\lambda_2,\lambda_3)\).
Variable Glossary
Symbol | Meaning |
---|---|
\(\boldsymbol\sigma=[\sigma_{ij}]\) | Cauchy stress tensor (symmetric; units Pa). |
\(\sigma_{ij}\) | \(i\)-component of traction acting on the plane whose outward normal is along \(j\). |
\(T_i\) | Traction on a plane with unit normal \(\vec n\): \(T_i=\sigma_{ji}n_j\). |
\(\vec n=(n_1,n_2,n_3)\) | Unit normal to a plane; satisfies \(n_i n_i=1\). |
\(\delta_{ij}\) | Kronecker delta (\(\delta_{ij}=1\) if \(i=j\), else \(0\)). |
\(\lambda\) | Eigenvalue of \(\boldsymbol\sigma\); equals a principal stress. |
\(\lambda_1,\lambda_2,\lambda_3\) | The three principal stresses (roots of the characteristic cubic). |
\(\vec n^{(k)}\) | Principal direction (unit eigenvector) associated with \(\lambda_k\). |
\(I,\,II,\,III\) | Stress invariants: \(I=\sigma_{ii}\), \(II=\tfrac12(\sigma_{ii}\sigma_{jj}-\sigma_{ij}\sigma_{ij})\), \(III=\det(\sigma_{ij})\). |
\(\mathbf I\) | Identity tensor (matrix). |
\(\boldsymbol\alpha\) | Orthogonal matrix of principal directions (columns); rotates to the principal frame. |
\(\boldsymbol\sigma'=\boldsymbol\alpha^{\!\top}\boldsymbol\sigma\,\boldsymbol\alpha\) | Stress tensor expressed in the principal basis (diagonal). |
Mean/Deviatoric Stress, Plane-Stress Transformations & Mohr’s Circle (with variable definitions)
1) Mean (hydrostatic) and deviatoric stress
Start from the symmetric Cauchy stress tensor \( \boldsymbol\sigma=\{\sigma_{ij}\} \) with \( \sigma_{ij}=\sigma_{ji} \):
Mean (hydrostatic) stress (one-third of the trace):
Deviatoric stress tensor (pure shape-change part):
Additive split of stress into mean + deviatoric:
2) Plane stress setup
Plane stress (thin plate) assumptions:
In-plane stress tensor (identify \(x\equiv 1\), \(y\equiv 2\)):
Rotate axes in the \(x\!-\!y\) plane by angle \( \theta \) about \(x_3\) to get \((x',y')\).
3) Stress transformation (derivation)
Rotation (direction-cosine) matrix for an in-plane rotation by \( \theta \):
Second-order tensor transformation:
Carrying out the multiplication for plane stress yields
Using \( \cos^2\theta-\sin^2\theta=\cos(2\theta) \) and \( 2\sin\theta\cos\theta=\sin(2\theta) \), the Mohr form is
Principal-frame special case \((\sigma_x,\sigma_y,\tau_{xy})=(\sigma_1,\sigma_2,0)\):
4) Mohr’s circle (interpretation)
Define the circle in the \((\sigma_n,\tau_n)\) plane:
A plane at physical angle \( \theta \) corresponds to the point
Principal stresses are where shear is zero (horizontal intercepts):
Maximum in-plane shear occurs \(90^\circ\) around the circle from principal points:
Link to mean/deviatoric (2D): the circle’s center \(C\) is the in-plane mean; the radius \(R\) is set by the in-plane deviatoric content. In 3D, the mean is \(\sigma_m=\tfrac13\,\mathrm{tr}(\boldsymbol\sigma)\) and deviatoric governs distortion.
Quick checklist
- \(\sigma_m=\tfrac13\,\mathrm{tr}(\boldsymbol\sigma)\), \( \mathbf s=\boldsymbol\sigma-\sigma_m\mathbf I\), \(s_{ii}=0\).
- Plane stress → use \(2\times2\) in-plane tensor \([\sigma_x\ \ \tau_{xy};\ \tau_{xy}\ \ \sigma_y]\).
- Rotate by \( \theta \): \( \boldsymbol\sigma'=\boldsymbol\alpha\,\boldsymbol\sigma\,\boldsymbol\alpha^\top\).
- Mohr form (with \(2\theta\)) gives the circle: center \(C\), radius \(R\), principals \(C\pm R\), max shear \(R\).
Variable Glossary (every symbol defined)
Symbol | Meaning |
---|---|
\(\boldsymbol\sigma=\{\sigma_{ij}\}\) | Cauchy stress tensor at a point (symmetric; units Pa). |
\(\sigma_{ij}\) | \(i\)-component of traction acting on the plane with outward normal along \(j\) (\(i,j\in\{1,2,3\}\)). |
\(\sigma_x,\sigma_y,\tau_{xy}\) | In-plane stresses in the \(x\!-\!y\) frame (\(\sigma_{11}=\sigma_x,\ \sigma_{22}=\sigma_y,\ \sigma_{12}=\sigma_{21}=\tau_{xy}\)). |
\(\sigma_{33},\sigma_{13},\sigma_{23}\) | Out-of-plane components (zero under plane-stress assumptions). |
\(\sigma_m\) | Mean (hydrostatic) stress \(=\tfrac13(\sigma_{11}+\sigma_{22}+\sigma_{33})\) (equals \(-p\) in fluid convention). |
\(s_{ij}\) | Deviatoric stress \(s_{ij}=\sigma_{ij}-\sigma_m\,\delta_{ij}\) (zero trace). |
\(\delta_{ij}\) | Kronecker delta (\(\delta_{ij}=1\) if \(i=j\), else \(0\)). |
\(\theta\) | Physical rotation angle of axes in the \(x\!-\!y\) plane (CCW positive). |
\(\boldsymbol\alpha\) | Direction-cosine (rotation) matrix; orthogonal with \(\boldsymbol\alpha^\top\boldsymbol\alpha=\mathbf I\). |
\(\boldsymbol\sigma'\) | Rotated stress tensor: \(\boldsymbol\sigma'=\boldsymbol\alpha\,\boldsymbol\sigma\,\boldsymbol\alpha^\top\). |
\(\sigma'_{11},\sigma'_{22},\tau'_{x'y'}\) | Transformed in-plane normal and shear stresses on a plane at angle \(\theta\). |
\((\sigma_n,\tau_n)\) | Normal/shear on a specific cut plane; equals \((\sigma'_{11},\tau'_{x'y'})\) for normal \(x'\). |
\(C\) | Mohr circle center \(C=\big(\tfrac{\sigma_x+\sigma_y}{2},\,0\big)\) (in-plane mean stress). |
\(R\) | Mohr circle radius \(R=\sqrt{\big(\tfrac{\sigma_x-\sigma_y}{2}\big)^2+\tau_{xy}^2}\). |
\(\sigma_{1,2}\) | In-plane principal stresses \(=\ C\pm R\). |
\(\tau_{\max}\) | Maximum in-plane shear \(=R\); occurs \(90^\circ\) around Mohr’s circle from principal points. |
Cauchy Stress & Static Equilibrium (with variable definitions)
Page 1 — Cauchy Stress
Stress tensor representation
The (symmetric) Cauchy stress tensor at a point:
Each component \( \sigma_{ij} \) is the i-component of traction (force per area) acting on the plane whose outward unit normal is along the j-direction.
Integral balance of forces on a body
Body force from stress divergence
By equilibrium inside the body, body forces balance stress divergence:
Substitute into the volume integral:
Surface traction (Cauchy’s formula)
Traction vector on a surface with unit normal \( n_k \):
Differential equilibrium (static)
Local (pointwise) balance of linear momentum in the absence of inertia:
Page 2 — Equilibrium Expansion
Force balance on a differential element
Expanding in Cartesian coordinates \(x_1,x_2,x_3\):
Compact index form (Einstein summation)
Variable Glossary (every symbol defined)
Symbol | Meaning |
---|---|
\(\sigma_{ij}\) | Components of the Cauchy stress tensor (Pa). \(i\)=force-component direction; \(j\)=normal direction of the plane. Symmetry: \(\sigma_{ij}=\sigma_{ji}\). |
\(\boldsymbol\sigma=\{\sigma_{ij}\}\) | Stress tensor ( \(3\times3\) matrix ). |
\(T_i\) | Traction (stress) vector components on a surface; Cauchy’s formula: \(T_i=\sigma_{ki}n_k\). |
\(n_k\) | Components of outward unit normal (\(\|\mathbf n\|=1\)). |
\(f_i\) | Body-force density (N/m\(^3\)); e.g., gravity \(f_i=\rho g_i\). |
\(x_k\) | Spatial coordinates; \(k,i,j\in\{1,2,3\}\) correspond to \(x_1=x,\ x_2=y,\ x_3=z\). |
\(V\) | Control volume (region for volume integrals). |
\(S\) | Boundary surface of \(V\); \(\mathrm dS\) is area element with outward normal \(\mathbf n\). |
\(\sum F_i=0\) | Net force balance (static equilibrium) in direction \(i\). |
\(\sigma_{ji,j}\) | Divergence of stress in index form: \(\sigma_{ji,j}\equiv \partial \sigma_{ji}/\partial x_j\). |
Units | \(\sigma_{ij},\,T_i\): Pa (N/m\(^2\)); \(f_i\): N/m\(^3\); \(x_k\): m. |
Orthotropic, Cubic, and Isotropic Solids (with variable definitions)
Page 1: Orthotropic, Cubic, and Isotropic Solids (Voigt notation)
Voigt vector mapping (convention used here):
- Stresses: \([\,\sigma_1,\sigma_2,\sigma_3,\sigma_4,\sigma_5,\sigma_6\,]^T \equiv [\,\sigma_{11},\sigma_{22},\sigma_{33},\sigma_{23},\sigma_{13},\sigma_{12}\,]^T\).
- Strains (engineering shear strains): \([\,\varepsilon_1,\varepsilon_2,\varepsilon_3,\varepsilon_4,\varepsilon_5,\varepsilon_6\,]^T \equiv [\,\varepsilon_{11},\varepsilon_{22},\varepsilon_{33},\gamma_{23},\gamma_{13},\gamma_{12}\,]^T\), with \(\gamma_{ij}=2\,\varepsilon_{ij}\) for \(i\ne j\).
Orthotropic solids (three orthogonal material planes of symmetry)
Cubic solids (three independent constants)
Zener anisotropy factor (cubic crystals): \[ A=\frac{2\,C_{44}}{C_{11}-C_{12}}. \] Isotropy corresponds to \(A=1\).
Isotropic solids (two independent constants)
For isotropy, \(C_{11}=\lambda+2\mu\), \(C_{12}=\lambda\), and \(C_{44}=\mu\), where \(\lambda,\mu\) are the Lamé constants (see Page 2).
Tensor transformation (general)
Under a rotation with direction cosines \(\alpha_{im}\), a 4th-order tensor transforms as
For isotropic solids, \(C_{ijkl}\) reduces to an isotropic combination of Kronecker deltas (next page).
Page 2: Isotropic 4th-Order Tensor & Lamé Constants
General isotropic 4th-order tensor
Most general isotropic 4th-order tensor (often written with two Lamé constants for elasticity):
(\(\delta_{ij}\) is the Kronecker delta; \(\lambda,\mu\) are Lamé constants; \(\mu\) is also the shear modulus \(G\)).
Hooke’s law (isotropic linear elasticity)
Expanded relations
Normal stress trace:
Volumetric strain:
General stress in terms of strain and mean stress:
Inverse (strain in terms of stress)
Useful modulus relations (isotropic)
where \(E\) = Young’s modulus, \(\nu\) = Poisson’s ratio, \(G\) = shear modulus, \(K\) = bulk modulus.
Variable Glossary
Symbol | Meaning |
---|---|
\(\sigma_{ij}\) | Cauchy stress components (Pa). Voigt map: \(\sigma_1=\sigma_{11}\), \(\sigma_2=\sigma_{22}\), \(\sigma_3=\sigma_{33}\), \(\sigma_4=\sigma_{23}\), \(\sigma_5=\sigma_{13}\), \(\sigma_6=\sigma_{12}\). |
\(\varepsilon_{ij}\) | Small-strain components (–); engineering shears \(\gamma_{ij}=2\varepsilon_{ij}\) for \(i\ne j\). Voigt: \(\varepsilon_1=\varepsilon_{11}\), \(\varepsilon_2=\varepsilon_{22}\), \(\varepsilon_3=\varepsilon_{33}\), \(\varepsilon_4=\gamma_{23}\), \(\varepsilon_5=\gamma_{13}\), \(\varepsilon_6=\gamma_{12}\). |
\(\mathbf C\) | Stiffness (Voigt \(6\times6\)) with entries \(C_{IJ}\) mapping \(\boldsymbol\varepsilon \mapsto \boldsymbol\sigma\). |
Orthotropic | Three orthogonal symmetry planes; 9 independent elastic constants (matrix shown above). |
Cubic | Crystal class with 3 constants \(C_{11},C_{12},C_{44}\); isotropy occurs when Zener \(A=1\). |
Isotropic | Direction-independent properties; 2 constants (e.g., \(\lambda,\mu\) or \(E,\nu\)). |
\(A\) | Zener anisotropy factor (cubic): \(A=2C_{44}/(C_{11}-C_{12})\) (–). |
\(\lambda,\mu\) | Lamé constants (Pa); \(\mu=G\) is the shear modulus. |
\(E,\ \nu,\ G,\ K\) | Young’s modulus (Pa), Poisson’s ratio (–), shear modulus (Pa), bulk modulus (Pa); \(K=\lambda+\tfrac{2}{3}\mu\). |
\(\delta_{ij}\) | Kronecker delta (\(\delta_{ij}=1\) if \(i=j\), else 0). |
\(\,C_{ijkl}\,\) | Elasticity tensor; isotropic form \(C_{ijkl}=\lambda\,\delta_{ij}\delta_{kl}+\mu(\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk})\). |
\(\alpha_{im}\) | Direction cosines (rotation matrix entries) for tensor transformations. |
Units | \(\sigma\) in Pa; moduli \(E,\lambda,\mu,G,K\) in Pa; \(\varepsilon,\gamma\) dimensionless. |
Isotropic Linear Elastic Solids — Tensile Testing, Poisson Relations, and Depth Stress
Page 1 — Isotropic Linear Elastic Solids (Tensile Testing)
General Hooke’s law (isotropic)
Trace relation
Strain in terms of stress (inverse relation)
Uniaxial tensile test
Apply only \(\sigma_{11}\neq 0\) and set \(\sigma_{22}=\sigma_{33}=\sigma_{12}=\sigma_{23}=\sigma_{31}=0\).
Then the axial stress–strain reduces to
With only \(\sigma_{11}\) nonzero, this simplifies to
Lamé parameter from \((E,\mu)\)
Variable Definitions (Page 1)
Symbol | Meaning |
---|---|
\(\sigma_{ij}\) | Cauchy stress components (Pa); \(\sigma_{11}\) is axial stress in the 1-direction. |
\(\varepsilon_{ij}\) | Small (engineering) strains (–); \(\varepsilon_{11}\) is axial strain. |
\(\delta_{ij}\) | Kronecker delta (1 if \(i=j\), else 0). |
\(\lambda,\mu\) | Lamé constants (Pa); \(\mu\) is the shear modulus \(G\). |
\(E\) | Young’s modulus (Pa). |
Note | Einstein summation: \(\varepsilon_{kk}=\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33}\). |
Page 2 — Relations with Poisson’s Ratio
Poisson’s ratio
Stress–strain using \(\lambda,\mu\)
Eliminating lateral strains using \(\nu\) gives the familiar forms:
Core identities (isotropic)
Stiffness matrix (Hooke’s law) in Voigt notation
Compliance matrix (strain from stress)
Variable Definitions (Page 2)
Symbol | Meaning |
---|---|
\(\nu\) | Poisson’s ratio (–): lateral contraction per unit axial extension (uniaxial stress). |
\(\{\sigma\}\) | Voigt stress vector \([\,\sigma_{11},\sigma_{22},\sigma_{33},\sigma_{23},\sigma_{13},\sigma_{12}\,]^T\). |
\(\{\varepsilon\}\) | Voigt strain vector \([\,\varepsilon_{11},\varepsilon_{22},\varepsilon_{33},\gamma_{23},\gamma_{13},\gamma_{12}\,]^T\), with \(\gamma_{ij}=2\varepsilon_{ij}\) for \(i\neq j\). |
Page 3 — Stress State at 3000 m Depth (Oedometric / Uniaxial Strain Condition)
Setup
- Depth: \(h=3000\ \text{m}\)
- Density: \(\rho=2500\ \text{kg/m}^3\)
- Gravity: \(g=9.81\ \text{m/s}^2\)
- Poisson’s ratio: \(\nu=0.25\)
- Lateral strains constrained: \(\varepsilon_{11}=\varepsilon_{22}=0\), only \(\varepsilon_{33}\neq 0\).
Vertical stress (overburden)
Uniaxial strain relations (isotropic)
With \(\varepsilon_{11}=\varepsilon_{22}=0\), Hooke’s law gives
Hence
Horizontal stress ratio
Numerical example (\(\nu=0.25\))
Variable Definitions (Page 3)
Symbol | Meaning |
---|---|
\(h\) | Depth below ground surface (m). |
\(\rho\) | Mass density of overburden (kg/m\(^3\)). |
\(g\) | Gravitational acceleration (m/s\(^2\)). |
\(\sigma_{33}\equiv\sigma_v\) | Vertical (overburden) stress (Pa or MPa). |
\(\sigma_{11}=\sigma_{22}\equiv\sigma_h\) | Horizontal stresses under lateral strain constraint (Pa or MPa). |
\(\varepsilon_{ij}\) | Small strains; here \(\varepsilon_{11}=\varepsilon_{22}=0\) (oedometer), \(\varepsilon_{33}\) vertical strain. |
\(\lambda,\mu; E,\nu\) | Lamé constants and moduli with \(E=2\mu(1+\nu)\), \(\lambda=\nu E/((1+\nu)(1-2\nu))\). |
Note: The uniaxial strain (oedometric) case used here differs from uniaxial stress. Under uniaxial strain, \(\varepsilon_{11}=\varepsilon_{22}=0\) and lateral stresses develop; under uniaxial stress, \(\sigma_{11}\neq 0\) with \(\sigma_{22}=\sigma_{33}=0\).
Static Elastic Problem → Navier’s Equations (with full variable definitions)
Page 1 — Static Elastic Problem (small deformation, linear elasticity)
Unknown fields
- Displacements: \(u_i\) → 3 unknown scalar fields (\(i=1,2,3\)).
- Strains: \(\varepsilon_{ij}\) → 6 unknowns (symmetric in \(i,j\)).
- Stresses: \(\sigma_{ij}\) → 6 unknowns (symmetric Cauchy stress).
Equilibrium (no acceleration)
Represents local force balance in the body.
Kinematics (small-strain definition)
Constitutive law (linear elastic, general)
\(C_{ijkl}\) is the (4th-order) stiffness tensor.
Boundary conditions
- Displacement BC on \(S_u\): \(\;u_i=\bar{u}_i\) on \(S_u\) (prescribed displacements).
- Traction BC on \(S_\sigma\): \(\;T_i=\sigma_{ji}n_j=\bar{T}_i\) on \(S_\sigma\) (prescribed tractions).
Displacement formulation (governing starting point)
Variable Definitions (Page 1)
Symbol | Meaning |
---|---|
\(x_i\) | Spatial coordinates; \(i=1,2,3\) (often \(x,y,z\)). |
\(u_i(x)\) | Displacement components (length units). |
\(\varepsilon_{ij}\) | Small (engineering) strain; symmetric tensor (dimensionless). |
\(\sigma_{ij}\) | Cauchy stress; symmetric (Pa = N/m\(^2\)). |
\(C_{ijkl}\) | Stiffness tensor (Pa); maps strain to stress. |
\(f_i\) | Body force per unit volume (N/m\(^3\)); e.g., gravity. |
\(T_i\) | Traction (surface force/area) on a plane with unit normal \(n_j\); \(T_i=\sigma_{ji}n_j\). |
\(n_j\) | \(j\)-component of the outward unit normal to a surface. |
\(S_u,\ S_\sigma\) | Boundary parts with prescribed displacement / traction. |
\(\bar u_i,\ \bar T_i\) | Prescribed boundary values for displacement / traction. |
Comma | Comma derivative: \(u_{i,j}\!\equiv\!\partial u_i/\partial x_j\); \(\sigma_{ij,k}\!\equiv\!\partial\sigma_{ij}/\partial x_k\). |
Einstein | Repeated indices imply summation over \(\{1,2,3\}\). |